Amino-Substituted Bisketenes
TABLE 1. Rate Constants for Ring Closure of Bisketenes 14 and
16 at 25 °C
SCHEME 4. Cyclobutenedione-Bisketene Interconversion
substituents
method, solvent
k (s-1
)
Me2N (14a)
MeNH (14b)
NH2 (14c)
PhNH (14d)
16 (R ) Me)
UV,a CH3CN
UV,b CH3CN
UV,c CH3CN
UV,a CH3CN
UV,d CH3CN
UV,e CDCl3
UV,e isooctane
UV,f CH3CN
IR,g CH3CN
(9.58 ( 0.38) × 107
(1.84 ( 0.32) × 105
(1.28 ( 0.13) × 103
(6.72 ( 0.25) × 106
(5.54 ( 0.27) × 104
(1.58 ( 0.08) × 104
(5.86 ( 0.34) × 103
(1.64 ( 0.06) × 105
(1.82 ( 0.08) × 105
1.77 × 105 (average)h
(4.02 ( 0.20) × 104
(1.04 ( 0.02) × 104
SCHEME 5. Preparation of Amino-Substituted
Cyclobutenediones 13 and 15, and Conversion to Bisketenes
14 and 16
16 (R ) n-Bu)
UV,e CDCl3
UV,e isooctane
a Monitoring wavelength 330 nm. b Monitoring wavelength 289 nm.
c Monitoring wavelength 280 nm. d Monitoring wavelength 300 and 283
nm. e Monitoring wavelength 315 and 275 nm. f Monitoring wavelength 290
nm. g Monitoring wavelength 2064, 2116 cm-1
.
h Average of the IR and
UV rate constants.
back to 11 may be observed spectroscopically, including
derivatives with ketene destabilizing chlorine and oxygen
substituents (Scheme 4).4d,8 Aminocyclobutenediones have been
extensively studied,9 and are biologically active,9g with applica-
tions in materials chemistry,9c but have not previously been
examined as bisketene precursors.
Results
Diamino-substituted cyclobutenediones9 with both free (13a,
R1R2N ) Me2N; 13b, R1R2N ) MeNH; 13c, R1R2N ) NH2;
13d, R1R2N ) PhNH) and tethered (15, R ) Me, n-Bu)
substituents were prepared from substitution reactions of amines
or 1,2-diamines, respectively, with diethoxycyclobutenedione
(Scheme 5). The X-ray structure of the tethered cyclobutene-
dione 15 (R ) Me) was determined, as shown in Figure S5
(Supporting Information), and conversions to the bisketenes 14
and 16 were carried out by using laser flash photolysis
(Scheme 4).
Upon laser flash photolysis of 13 and 15 in CH3CN and other
solvents with previous techniques8e,10a,b the respective bisketenes
14 and 16 were generated as transient species, and the kinetics
of reformation of the cyclobutenediones were measured by the
increase in the UV absorption at wavelengths given with the
observed rate constants in Table 1. A representative kinetic trace,
for the reformation of the UV absorbance for 13a in CH3CN,
is shown in Figure 1. The variation of the rate constants with
solvent polarity CH3CN > CDCl3 > isooctane is similar to that
FIGURE 1. Recovery of UV absorption of cyclobutenedione 13
(R1R2N ) Me2N) from the bisketene 14 formed by laser flash
photolysis.
observed for other bisketenes, which was attributed to greater
polarity of the incipient product cyclobutenediones.8d
The identification of the bisketene 16 (R ) n-Bu) was
confirmed by observation of distinctive ketenyl IR bands at 2064
and 2116 cm-1 in CH3CN (Figure 2), and the kinetics of the
decay of this absorption were measured by IR, and gave a rate
constant in good agreement with the value measured by UV
for reformation of the cyclobutenedione 15 (Table 1).
Selected reactions were also examined computationally with
use of DFT methods at the B3LYP/6-31G(d) level, using
(9) (a) Frontera, A.; Morey, J.; Oliver, A.; Pin˜a, M. N.; Quin˜onero, D.;
Costa, A.; Ballaster, P.; Deya, P. M.; Anslyn, E. V. J. Org. Chem. 2006,
71, 7185-7195. (b) Muthyala, R. S.; Subramanian, G.; Todaro, L. Org.
Lett. 2004, 6, 4663-4665. (c) Lunelli, B.; Roversi, P.; Ortoleva, E.; Destro,
R. J. Chem. Soc., Faraday Trans. 1996, 92, 3611-3623. (d) Griffiths,
G. R.; Rowe, M. D.; Webb, G. A. J. Mol. Struct. 1971, 8, 363-371. (e)
Maahs, G.; Hegenberg, P. Angew. Chem., Int. Ed. 1966, 5, 888-893. (f)
Thorpe, J. E. J. Chem. Soc. B 1968, 435-436. (g) Verniest, G.; Colpaert,
J.; To¨rnoos, K. W.; De, Kimpe, N. J. Org. Chem. 2005, 70, 4549-4552.
(h) Ehrhardt, H.; Hu¨nig, S.; Pu¨tter, H. Chem. Ber. 1977, 110, 2506-2523.
(10) (a) Allen, A. D.; Fedorov, A. V.; Najafian, K.; Tidwell, T. T.;
Vukovic, S. J. Am. Chem. Soc. 2004, 126, 15777-15783. (b) Acton,
A. W.; Allen, A. D.; Antunes, L. M.; Fedorov, A. V.; Najafian, K.; Tidwell,
T. T.; Wagner, B. D. J. Am. Chem. Soc. 2002, 124, 13790-13794.
(c) Gaussian 98, Revision A-9; Gaussian, Inc.: Pittsburgh, PA, 1998.
(8) (a) Allen, A, D.; McAllister, M. A.; Tidwell, T. T.; Zhao, D. Acc.
Chem. Res. 1995, 115, 265-271. (b) Allen, A. D.; Lough, A. J.; Tidwell,
T. T. Chem. Commun. 1996, 2171-2172. (c) Allen, A. D.; Colomvakos,
J. D.; Egle, I.; Lusztyk, J.; McAllister, M. A.; Tidwell, T. T.; Wagner,
B. D.; Zhao, D.-c. J. Am. Chem. Soc. 1995, 117, 7552-7553. (d) Allen,
A. D.; Colomvakos, J. D.; Diederich, F.; Egle, I.; Lusztyk, J.; McAllister,
M. A.; Rubin, Y.; Tidwell, T. T.; Wagner, B. D.; Zhao, D.-c. J. Am. Chem.
Soc. 1997, 119, 12045-12050. (e) Aguilar-Aguilar, A.; Allen, A. D.; Pen˜a-
Cabrera, E.; Fedorov, A.; Fu, N.; Henry-Riyad, H.; Kobayashi, S.;
Leuninger, J.; Schmid, U.; Tidwell, T. T.; Verma, R. J. Org. Chem. 2005,
71, 9556-9561. (f) McAllister, M. A.; Tidwell, T. T. J. Am. Chem. Soc.
1994, 116, 7233-7238.
J. Org. Chem, Vol. 72, No. 6, 2007 1953