Zhu et al.
1
4
possessing unique magnetic, photophysical, and/or redox prop-
erties which are not accessible from purely organic systems,
have shown promise as a new class of functional receptor
molecular machines, and supramolecular polymers. Previous
work has illustrated that crown ethers can also be used as flexible
11
building blocks to construct discrete complexes. More recently,
Stang et al. reported several discrete cavity-cored self-assemblies
containing multiple pendant dibenzo-24-crown-8 (DB24C8)
1
c,5
meolecules.
By incorporating functionalities, such as por-
6
7
8
9
10
phyrin, carborane, calixarene, cavitand, ferrocene, and
5
d,e,11
5d,e
crown ether,
into the final discrete assemblies, artificial
derivatives.
These DB24C8-containing hosts have a similar
functional nanoscale devices with precisely controlled shapes,
ability to bind dibenzylammonium guest(s) as does DB24C8
in nonpolar solvents, such as dichloromethane.
1
2
5d,e
sizes, and geometries can be constructed.
Crown ethers have attracted much attention for their interest-
1
3
ing binding properties with metal and organic cations. They
have been widely used in the preparation of chemosensors,
(
2) (a) Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am. Chem. Soc.
1
5
994, 116, 1151–1152. (b) Kang, J.; Rebek, J., Jr. Nature (London) 1997, 385,
0–52. (c) Berry, J. F.; Cotton, F. A.; Ibragimov, S. A.; Murillo, C. A.; Wang,
X. J. Chem. Soc., Dalton Trans. 2003, 22, 4297–4302. (d) Yoshizawa, M.;
Tamura, M.; Fujita, M. Science 2006, 312, 251–254.
(
3) (a) Andersson, M.; Linke, M.; Chambron, J.-C.; Davidsson, J.; Heitz,
V.; Hammarstrom, L.; Sauvage, J.-P. J. Am. Chem. Soc. 2002, 124, 4347–4362.
b) Kuehl, C. J.; Kryschenko, Y. K.; Radhakirshnan, U.; Seidel, S. R.; Huang,
S. D.; Stang, P. J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4932–4936. (c)
Yoshizawa, M.; Tamura, M.; Fujita, M. J. Am. Chem. Soc. 2004, 126, 6846–
The significant recognition motif based on bis(m-phenylene)-
-crown-10 (BMP32C10) (4) and paraquat (N,N′-dimethyl-4,4′-
(
3
bipyridinium) (5) derivatives has been employed to prepare
6
847. (d) Yue, N. L. S.; Jennings, M. C.; Puddephatt, R. J. Inorg. Chem. 2005,
15a-f
numerous host-guest complexes
and a fluorescence
44, 1125–1131. (e) Tashiro, S.; Tominaga, M.; Yamaguchi, Y.; Kato, K.; Fujita,
1
5g
M. Angew. Chem., Int. Ed. 2006, 45, 241–244. (f) Fioravanti, G.; Haraszkiewicz,
N.; Kay, E. R.; Mendoza, S. M.; Bruno, C.; Marcaccio, M.; Wiering, P. G.;
Paolucci, F.; Rudolf, P.; Brouwer, A. M.; Leigh, D. A. J. Am. Chem. Soc. 2008,
chromophore.
We envisioned that the combination of the
BMP32C10-based bispyridyl or dicarboxyl donor units and
appropriately designed Pt(II) acceptors can afford novel func-
tionalized molecular devices with precisely controlled shapes,
sizes, and geometries via the coordination-driven self-assembly
process. The resulting multicrown ether-based self-assemblies,
varying in location and total number of incorporated crown ether
moieties, may exhibit different affinities for guest(s) compared
with that of the single bis(m-phenylene)-32-crown-10 host. For
example, it is possible to use metal-coordination to control the
binding of the BMP32C10 units to paraquat if the bispyridyl
or dicarboxyl donor units are conjugated or very close to the
crown ether moieties. Herein, we report the synthesis of three
1
30, 2593–2601.
4) (a) Lehn, J.-M. Supramolecular Chemistry: concepts and perspectiVes;
(
VCH: New York, 1995. (b) Chambron, J.-C.; Dietrich-Buchecker, C.; Sauvage,
J.-P. Transition Metals as Assembling and Templating Species. In ComprehensiVe
Supramolecular Chemistry; Lehn, J.-M., Chair, E., Atwood, J. L., Davis, J. E. D.,
MacNicol, D. D., Vogtle, F. Eds.; Pergamon Press: Oxford, UK, 1996; Vol. 9,
Chapter 2, p 43. (c) Fujita, M. Chem. Soc. ReV. 1998, 27, 417–425. (d) Caulder,
D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975–982. (e) Uller, E.;
Demleitner, I.; Bernt, I.; Saalfrank, R. W. Synergistic Effect of Serendipity and
Rational Design in Supramolecular Chemistry. In Structure and Bonding; Fujita,
M. Ed.; Springer: Berlin, Germany, 2000; Vol. 96, p 149. (f) Leininger, S.;
Olenyuk, B.; Stang, P. J. Chem. ReV. 2000, 100, 853–908. (g) Holliday, B. J.;
Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022–2043. (h) Seidel, S. R.;
Stang, P. J. Acc. Chem. Res. 2002, 35, 972–983. (i) Swiegers, G. F.; Malefetse,
T. J. Coord. Chem. ReV. 2002, 225, 91–121. (j) Kaiser, A.; B a¨ uerle, P. Top.
Curr. Chem. 2005, 249, 127–201. (k) Yamauchi, Y.; Yoshizawa, M.; Fujita, M.
J. Am. Chem. Soc. 2008, 130, 5832–5833. (l) Caskey, D. C.; Yamamoto, T.;
Addicott, C.; Shoemaker, R. K.; Vacek, J.; Hawkridge, A. M.; Muddiman, D. C.;
Kottas, G. S.; Michl, J.; Stang, P. J. J. Am. Chem. Soc. 2008, 130, 7620–7628.
1
6
BMP32C10-based discrete supramolecular rhomboids by
metal-coordination-driven self-assembly of the 60° Pt(II)-based
building blocks and functionalized dicarboxyl or bispyridyl
bridging ligands, and the study of the complexation of these
multicrown ether-based self-assemblies with paraquat.
(
1
m) Zhao, L.; Northrop, B. H.; Stang, P. J. J. Am. Chem. Soc. 2008, 130, 11886–
1888.
(
5) (a) Jacopozzi, P.; Dalcanale, E. Angew. Chem., Int. Ed. 1997, 36, 613–
6
15. (b) Baer, A. J.; Koivisto, B. D.; Cote, A. P.; Taylor, N. J.; Hanan, G. S.;
Nierengarten, H.; Dorsselaer, A. V. Inorg. Chem. 2002, 41, 4987–4989. (c)
Chang, S.-Y.; Jang, H.-Y.; Jeong, K.-S. Chem.sEur. J. 2003, 9, 1535–1541.
Results and Discussion
(
d) Yang, H.-B.; Ghosh, K.; Northrop, B. H.; Zheng, Y.-R.; Lyndon, M. M.;
A. Synthesis of Crown Ether-Based 120° Donor Precur-
sors 9 and 11. The key starting material 7 was prepared
according to the literature. The intermediate BMP32C10-based
Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2007, 129, 14187–14189. (e)
Ghosh, K.; Yang, H.-B.; Northrop, B. H.; Lyndon, M. M.; Zheng, Y.-R.;
Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2008, 130, 5320–5334.
17
(
6) (a) Drain, C. M.; Lehn, J.-M. J. Chem. Soc., Chem. Commun. 1994, 2313–
315. (b) Stang, P. J.; Fan, J.; Olenyuk, B. Chem. Commun. 1997, 1453–1454.
7) (a) Das, N.; Stang, P. J.; Arif, A. M.; Campana, C. F. J. Org. Chem.
macrocyclic 120° donor precursors, 8 and 10, were obtained in
2
(
2
005, 70, 10440–10446. (b) Jude, H.; Disteldorf, H.; Fischer, S.; Wedge, T.;
(14) (a) Balzani, V.; Gomez-Lopez, M.; Stoddart, J. F. Acc. Chem. Res. 1998,
31, 405–414. (b) Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. ReV. 2004,
104, 2723–2750. (c) Huang, F.; Gibson, H. W. J. Am. Chem. Soc. 2004, 126,
14738–14739. (d) Huang, F.; Nagvelkar, D. S.; Zhou, X.; Gibson, H. W.
Macromolecules 2007, 40, 3561–3567.
(15) (a) Bryant, W. S.; Jones, J. W.; Mason, P. E.; Guzei, I. A.; Rheingold,
A. L.; Nagvekar, D. S.; Gibson, H. W. Org. Lett. 1999, 1, 1001–1004. (b) Jones,
J. W.; Zakharov, L. N.; Rheingold, A. L.; Gibson, H. W. J. Am. Chem. Soc.
2002, 124, 13378–13379. (c) Huang, F.; Guzei, I. A.; Jones, J. W.; Gibson,
H. W. Chem. Commun. 2005, 1693–1695. (d) Huang, F.; Gantzel, P.; Nagvekar,
D. S.; Rheingold, A. L.; Gibson, H. W. Tetrahedron. Lett. 2006, 47, 7841–
7844. (e) Yang, Y.; Hu, H.-Y.; Chen, C.-F. Tetrahedron. Lett. 2007, 48, 3505–
3509. (f) Li, S.; Liu, M.; Zhang, J.; Zheng, B.; Zhang, C.; Wen, X.; Li, N.;
Huang, F. Org. Biomol. Chem. 2008, 12, 2103–2107. (g) Zhang, J.; Zhai, C.;
Wang, F.; Zhang, C.; Li, S.; Zhang, M.; Li, N.; Huang, F. Tetrahedron Lett.
2008, 49, 5009–5012.
(16) (a) Kryschenko, Y. K.; Seidel, S. R.; Arif, A. M.; Stang, P. J. J. Am.
Chem. Soc. 2003, 125, 5193–5198. (b) Mukherjee, P. S.; Das, N.; Kryschenko,
Y. K.; Arif, A. M.; Stang, P. J. J. Am. Chem. Soc. 2004, 126, 2464–2473. (c)
Yang, H.-B.; Das, N.; Huang, F.; Hawkridge, A. M.; Muddiman, D. C.; Stang,
P. J. J. Am. Chem. Soc. 2006, 128, 10014–10015. (d) Yang, H.-B.; Hawkridge,
A. M.; Huang, S. D.; Das, N.; Bunge, S. D.; Muddiman, D. C.; Stang, P. J.
J. Am. Chem. Soc. 2007, 129, 2120–2129.
Hawkridge, A. M.; Arif, A. M.; Hawthorne, M. F.; Muddiman, D. C.; Stang,
P. J. J. Am. Chem. Soc. 2005, 127, 12131–12139.
(
8) (a) Ikeda, A.; Yoshimara, M.; Tani, F.; Naruta, Y.; Shinkai, S. Chem.
Lett. 1998, 27, 587–588. (b) Ikeda, A.; Udzu, H.; Zhong, Z.; Shinkai, S.;
Sakamoto, S.; Yamaguchi, K. J. Am. Chem. Soc. 2001, 123, 3872–3877.
9) Jude, H.; Sinclair, D. J.; Das, N.; Sherburn, M. S.; Stang, P. J. J. Org.
Chem. 2006, 71, 4155–4163.
10) (a) Das, N.; Arif, A. M.; Stang, P. J.; Sieger, M.; Sarkar, B.; Kaim, W.;
Fiedler, J. Inorg. Chem. 2005, 44, 5798–5804. (b) Yang, H.-B.; Ghosh, K.; Zhao,
Y.; Northrop, B. H.; Lyndon, M. M.; Muddiman, D. C.; White, H. S.; Stang,
P. J. J. Am. Chem. Soc. 2008, 130, 839–841.
(
(
(
11) (a) Chi, K.-W.; Addicott, C.; Stang, P. J. J. Org. Chem. 2004, 69, 2910–
912. (b) Huang, F.; Yang, H.-B.; Das, N.; Maran, U.; Arif, A. M.; Gibson,
H. W.; Stang, P. J. J. Org. Chem. 2006, 71, 6623–6625.
12) Northrop, B. H.; Yang, H.-B.; Stang, P. J. Chem. Commun. 2008, 5896–
908.
13) (a) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017–7036. (b) Shahriari-
Zavareh, H.; Stoddart, J. F.; Williams, D. J. Chem. Commun. 1987, 1058–1061.
c) Ashton, P. R.; Chrystal, E. J. T.; Glink, P.; Menzer, T. S.; Schiavo, C.;
2
(
5
(
(
Spencer, N.; Stoddart, J. F.; Tasker, P. A.; White, A. J. P.; Williams, D. J.
Chem.sEur. J. 1996, 2, 709–728. (d) Kiviniemi, S.; Nissinen, M.; L a¨ ms a¨ , M. T.;
Jalonen, J.; Rissanen, K.; Pursiainen, J. New J. Chem. 2000, 24, 47–52.
3
906 J. Org. Chem. Vol. 74, No. 10, 2009