Chemistry - A European Journal
10.1002/chem.202004281
FULL PAPER
0
0
.0634), R = 0.0583 (>2(I)), 0.1073 (all data), wR2 = 0.1477 (>2(I)),
.2350 (all data), S = 1.436 (898 parameters). See Supporting Information.
[2]
MesP=CPh
2
: T. C. Klebach, R. Lourens, F. Bickelhaupt, J. Am. Chem.
Soc. 1978, 100, 4886–4888.
[
[
[
3]
4]
5]
a) K. B. Dillon, F. Mathey, J. F. Nixon, Phosphorus: The Carbon Copy
Wiley, Chichester, 1999; b) M. Regitz, O. J. Scherer Eds., Multiple Bonds
and Low Coordination in Phosphorus Chemistry Thieme, Stuttgart, 1990.
a) F. Mathey, Angew. Chem. Int. Ed. 2003, 42, 1578–1604; Angew.
Chem. 2003, 115, 1616–1643; b) M. Yoshifuji, J. Chem. Soc. Dalton
Trans. 1998, 3343–3350.
Preparation of 3b: A mixture of 1a (73.5 mg, 0.10 mmol) and (tht)AuCl
64.1 mg, 0.20 mmol) in dichloromethane (1 mL) was stirred for 1 h at the
room temperature. After the volatile materials are removed under the
reduced pressure, the resultant residue was dissolved in dichloromethane
(
(1 mL) under nitrogen atmosphere. The mixture was stirred for 1 h at the
a) F. Ozawa, M. Yoshifuji, Dalton Trans. 2006, 4987–4995; b) P. Le Floch,
Coord. Chem. Rev. 2006, 250, 627–681; c) J. Dugal-Tessier, E. D.
Conrad, G. R. Dake, D. P. Gates, “Phosphaalkenes” in Phosphorus(III)
Ligands in Homogeneous Catalysis (Eds.: P. C. J. Kamer, P. W. N. M.
van Leeuwen), Wiley, Chichester, 2012, pp 321–341.
room temperature, and the volatile materials were removed under the
reduced pressure. The resultant residue was washed with hexane (5 ml)
to afford 3b as a pink solid (102.1 mg, 85%). 13C{ H} NMR (75 MHz, CDCl
1
3
)
31.0, 31.0, 33.8 (d, J = 3.5 Hz), 34.3, 34.5, 34.8, 35.1, 38.9 (d, J = 1.4
Hz), 39.9, 41.3, 122.8 (d, J = 10.4 Hz), 123.5, 124.8, 126.5–128.5, 129.4,
33.3, 135.0 (dd, J = 54.8 Hz, J = 0.7 Hz), 135.4–136.5, 153.1 (d, J = 3.0
Hz), 154.6 (d, J = 2.8 Hz), 157.5 (d, J = 1.4 Hz), 158.1, 159.3–159.7, 161.4,
[
6]
a) M. Okazaki, H. Hayashi, D.-F. Fu, S.-T. Liu, F. Ozawa,
Organometallics 2009, 28, 902–908; b) J. Waluk, H.-P. Klein, A. J. Ashe,
J. Michl, Organometallics 1989, 8, 2804–2808.
1
1
90.6 (d, J = 47.3 Hz); HRMS (APCI) calcd for C49
2
H68Au Cl
2
NaOP
2
+
[7]
a) S. Ito, T. Shinozaki, K. Mikami, Eur. J. Org. Chem. 2017, 6889–6900;
b) S. Ito, M. Nanko, T. Shinozaki, M. Kojima, K. Aikawa, K. Mikami, Chem.
Asian J. 2016, 11, 823–827; c) S. Ito, M. Nanko, K. Mikami,
ChemCatChem 2014, 10, 1032–1036; d) S. Ito, L. Zhai, K. Mikami, Chem.
Asian J. 2011, 6, 3077–3083; e) S. Ito, S. Kusano, N. Morita, K. Mikami,
M. Yoshifuji, J. Organomet. Chem. 2010, 695, 291–296; f) M. Freytag, S.
Ito, M. Yoshifuji, Chem. Asian J. 2006, 1, 693–700; g) S. Ito, M. Freytag,
M. Yoshifuji, Dalton Trans. 2006, 710–713.
[M+Na] 1221.3351, found 1221.3307.
Hydration of propargyl acetate[27]: To a corresponding chlorogold complex
(
(
3 mol%), a solution of propargyl acetate (17.4 mg, 0.10 mmol) in acetone
1 mL) and H O (1.0 mmol) was added at the room temperature. After
2
stirred for 48 hours, the reaction mixture was directly loaded on a silica gel
SiO ) column and eluted with hexane/ethyl acetate 6:1 to give 2-oxo-1-
phenylpropyl acetate as a colorless oil.
(
2
[8]
Selected books: a) A. S. K. Hashmi, F. D. Toste (Eds.), Modern Gold
Catalyzed Synthesis Wiley-VCH, Weinheim, 2012; b) F. D. Toste, V.
Michelet (Eds.), Gold Catalysis: A Homogeneous Approach Imperial
College Press, 2014; c) L. M. Slaughter (Eds), Top. Curr. Chem. 2015,
Cycloisomerization of 1,6-enyne[28]
: To a corresponding chlorogold
complex (3 mol%), a solution of 1,6-enyne (25.3 mg, 0.10 mmol) in
dichloromethane (1 mL) was added at the room temperature. After stirred
for 24 h, the reaction mixture was directly loaded on a silica gel column
and eluted with hexane/ethyl acetate 6:1 to give the cycloisomerization
product as a colorless oil.
3
57, 1–284. d) A. M. Echavarren, M. E. Muratore, V.López-Carrillo, A.
Escribano-Cuesta, N. Huguet, C. Obradors, Org. React. 2017, 92, 1–
11; e) E. Merino, A. Salvador, C. Nevado, Science of Synthesis,
4
Applications of Domino Transformations in Organic Synthesis (S. A.
Snyder Ed.) 2016, 1, 535–575.
Alkoxycyclization of 1,6-enyne[28]: To a corresponding chlorogold complex
[9]
Recent reviews on gold catalysis: a) T. A. C. A. Bayrakdar, T. Scattolin,
X. Ma, S. P. Nolan, Chem. Soc. Rev. 2020, 49, 7044–7100; b) L.
(
(
3 mol%), a solution of 1,6-enyne (25.3 mg, 0.10 mmol) in dichloromethane
0.5 mL) and methanol (0.5 mL) was added at the room temperature. After
Rocchigiani,
0.1021/acs.chemrev.0c00552; c) L.-W. Ye, X.-Q. Zhu, R. L. Sahani, Y.
Xu, P.-C. Qian, R.-S. Liu, Chem. Rev. DOI:
0.1021/acs.chemrev.0c00348; d) P. Milcendeau, N. Sabat, A. Ferry, X.
M.
Bochmann,
Chem.
Rev.
DOI:
stirred for 24 h, the reaction mixture was directly loaded on a silica gel
column and eluted with hexane/ethyl acetate 6:1 to give the product as a
colorless oil.
1
1
Guinchard, Org. Biomol. Chem. 2020, 17, 6006–6017; e) S. Banerjee, V.
W. Bhoyare, N. T. Patil, Chem. Commun. 2020, 56, 2677–2690; f) A.
Nijamudheen, A. Datta, Chem. Eur. J. 2020, 26, 1442–1487; g) V.
Pirovano, G. Abbiati, E. Brambilla, E. Rossi, Eur. J. Inorg. Chem. 2020,
962–977; h) B. Huang, F. D. Toste, Trends Chem. 2020, 2, 707–720; i)
G. Meera, K. R. Rohit, G. S. S. Treesa, G. Anilkumar, Asian J. Org. Chem.
2020, 9, 144–161; j) G. Zuccarello, M. Zanini, A. M. Echavarren, Isr. J.
Chem. 2020, 60, 360–372; k) X.-T. Tang, F. Yang, T.-T. Zhang, Y.-F. Liu,
T.-F. Su, D.-C. Lv, W.-B. Shen, Catalysts 2020, 10, 350; l) X. Zhao, M.
Rudolph, A. S. K. Hashmi, Chem. Commun. 2019, 55, 12127–12135; m)
R. Murakami, F. Inagaki, Tetrahedron Lett. 2019, 60, 151231; n) C.
Praveen, Coord. Chem. Rev. 2019, 392, 1–34; o) E. Aguilar, J.
Santamaria, Org. Chem. Front. 2019, 6, 1513–1540; p) F. Gagosz,
Synthesis 2019, 51, 1087–1099; q) J. L. Mascareñas, I. Varela, F. López,
Acc. Chem. Res. 2019, 52, 465–479; r) M. Brill, S. P. Nolan, Top.
Organomet. Chem. 2018, 62, 51–90; s) M. O. Akram, S. Banerjee, S. S.
Saswade, V. Bedi, N. T. Patil, Chem. Commun. 2018, 54, 11069–11083;
t) W. Fang, M. Shi, Chem. Eur. J. 2018, 24, 9998–10005; u) A. Fürstner,
Angew. Chem. Int. Ed. 2018, 57, 4215–4233; Angew. Chem. 2018, 130,
Intramolecular hydroalkoxylation of allenyl alcohol[29]: A mixture of 3b (5
mol%) and additive in toluene (0.4 mL) was stirred for 10 min at room
temperature. To the mixture in toluene was added 2,2-diphenylhexa-4,5-
dien-1-ol (25.3 mg, 0.10 mmol) in toluene (0.6 mL) at room temperature.
After stirring for 24 h, the reaction mixture was directly loaded on a short
silica gel column and eluted with hexane/ethyl acetate to give the 2-
vinyltetrahydrofuran as a colorless oil.
Acknowledgements
This work was supported in part by Grants-in-Aid for Scientific
Research (No. 19H02685) from the Ministry of Education, Culture,
Sports, Science and Technology, and Nissan Chemicals Co. Ltd.
The authors thank Prof. Tetsuro Murahashi and Dr. Koji
Yamamoto of Tokyo Institute of Technology for supporting the VT-
NMR experiments. Prof. Toshiro Takao of Tokyo Institute of
Technology supported the X-ray diffraction measurements. The
authors thank the referees for suggesting intensive studies for
elucidating the effects of alcohol on mono(chlorogold) complexes
4289–4308.
[10] A. Zhdanko, M. E. Maier, ACS Catal. 2014, 4, 2770–2775.
[11] Catalytic properties of phosphinine-AuCl complexes: M. a) Rigo, E. R. M.
Habraken, K. Bhattachayya, M. Weber, A. W. Ehlers, N. Mezáilles, J. C.
Slootweg, C. Müller, Chem. Eur. J. 2019, 25, 8769–8779; b) M. Rigo, L.
Hettmanczyk, F. J. L. Heutz, S. Hohloch, M. Lutz, B. Sarkar, C. Müller,
Dalton Trans. 2017, 46, 86–95.
2
as well as exploration of unprecedented catalytic processes.
Keywords: phosphaalkenes • gold catalysis • conformational
isomerism • electron density distribution • coordination chemistry
[
12] a) B. Wagner, K. Belger, S. Minkler, V. Belting, N. Krause, Pure Appl.
Chem. 2016, 88, 391–399; b) A. Collado, A. Gomez-Suarez, S. P. Nolan,
RSC Green Chemistry Series 2016, 39, 41–90.
[1]
R. C. Fischer, P. P. Power, Chem. Rev. 2010, 110, 3877–3923.
6
This article is protected by copyright. All rights reserved.