C O M M U N I C A T I O N S
Table 2. Scope of the Pd-Catalyzed Indole/Benzene Cross-Couplinga
a Conditions: Pd(TFA)2 (5 mol %), AgOAc (3 equiv), PivOH (6 equiv), and the N-pivalylindole were added to a screw-capped vial followed by benzene
(approximately 60 equiv) and heating to 110 °C. b Determined by GC/MS. c Isolated yield. d Represents the ratio of C2/C3/double arylation. e Represents
the ratio of the major (isolated) isomer to other minor isomers detected by GC/MS. f 10 mol % Pd used. g Cu(OAc)2 used as the oxidant. See SI.
(2) For examples with indoles, see: (a) Deprez, N. R.; Kalyani, D.; Krause,
1, entries 6-9). Furthermore, the addition of 2 equiv of CsOAc to
reactions performed with 20 mol % Pd(TFA)2 in the absence of
A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972. (b) Wang, X.;
Lane, B. S.; Sames, D. J. Am. Chem. Soc. 2005, 127, 4996. (c) Lane, B.
S.; Sames, D. Org. Lett. 2004, 6, 2897. (d) Wang, X.; Gribkov, D. V.;
Sames, D. J. Org. Chem. 2007, 72, 1476. (e) Lane, B. S.; Brown, M. A.;
Sames, D. J. Am. Chem. Soc. 2005, 127, 8050.
oxidants induces very high C2 selectivity (entry 10 vs 6).
Our rationale for the dramatic change in selectivity continues to
evolve. These studies indicate that it is the acetate base, when added
as a AgI or CsI salt, and not the metal counterion that imparts the
increased C2 selectivity to the Pd catalyst. This may be due to
carboxylate-induced cleavage of higher-order Pd clusters and the
formation of monomeric Pd species (vide infra). On the other hand,
when excess Cu(OAc)2 is added to a catalytic quantity of Pd(TFA)2,
mixed Pd-Cu clusters may be formed that exhibit pronounced C3
selectivity.12,13 The change in C3/C2 selectivity as a function of
[Pd] is indirect support for this hypothesis. At high [Pd], where
the presence of trinuclear Pd carboxylate clusters should be favored,
high C3 selectivity is observed. It is plausible that analogous mixed
Pd-Cu complexes may behave in a similar fashion.
(3) Hassan, J.; Se´vignon, M.; Gozzi, C.; Shulz, E.; Lemaire, M. Chem. ReV.
2002, 102, 1359.
(4) For recent examples of oxidative arene homocoupling, see: (a) Hull, K.
L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047 and
refs therein. (b) Takahashi, M.; Masui, K.; Sekiguchi, H.; Kobayashi, N.;
Mori, A.; Funahashi, M.; Tamaoki, N. J. Am. Chem. Soc. 2006, 128,
10930. (c) Mukhopadhyay, S.; Rothenberg, G.; Lando, G.; Agbaria, K.;
Kazanci, M.; Sasson, Y. AdV. Synth. Catal. 2001, 343, 455. With other
catalysts: (d) Li, X.; Hewgley, J. B.; Mulrooney, C. A.; Yang, J.;
Kozlowski, M. C. J. Org. Chem. 2003, 68, 5500 and refs therein.
(5) For lead examples dealing with oxidative cross-coupling and stoichiometric
Pd, see: (a) Itahara, T. J. Chem. Soc., Chem. Commun. 1981, 254. (b)
Itahara, T. J. Org. Chem. 1985, 50, 5272.
(6) For recent Pd-catalyzed reactions, see: (a) Stuart, D. R.; Fagnou, K.
Science 2007, 317, 1172. (b) Dwight, T. A.; Rue, N. R.; Charyk, D.;
Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137. (c) Li, R.; Jiang, L.;
Lu, W. Organometallics 2006, 25, 5973.
(7) (a) Smrcˇina, M.; Lorenc, M.; Hanusˇ, V.; Sedmera, P.; Kocˇovsky, P. J.
Org. Chem. 1992, 57, 1917. (b) Ding, K.; Xu, Q.; Wang, Y.; Liu, J.; Yu,
Z.; Du, B.; Wu, Y.; Koshima, H.; Matsuura, T. J. Chem. Soc., Chem.
Commun. 1997, 693.
(8) For examples where substrate or solvent modification can result in a
dramatic change in selectivity, see: (a) Grimster, N. P.; Gauntlett, C.;
Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem., Int. Ed. 2005, 44, 3125.
(b) Beck, E. M.; Grimster, N. P.; Hatley, R.; Gaunt, M. J. J. Am. Chem.
Soc. 2006, 128, 2528. See also ref 2e.
(9) For illustrative recent examples employing metal oxidants, see: (a) Chen,
X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc.
2006, 128, 78. (b) Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem.
Soc. 2006, 128, 12634. (c) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am.
Chem. Soc. 2006, 128, 9084. (d) Pei, T.; Wang, X.; Widenhoefer, R. A.
J. Am. Chem. Soc. 2003, 125, 648. See also refs 8a,b and 4c.
(10) A previous report describes stoichiometric Pd(OAc)2 giving a 22% yield
of the C2 isomer. In our hands, these conditions give 50-100% conversion
and a C3/C2 ratio of 1.5:1. See ref 5a.
These results point to new opportunities for control of reactivity/
selectivity in Pd-catalyzed oxidative cross-coupling reactions and
may have broader impact in PdII catalysis. They also support the
potential of this approach in the synthesis of biaryl molecules.
Acknowledgment. We thank NSERC and the University of
Ottawa for support of this work. The Research Corporation,
Boehringer Ingelheim (Laval), Merck Frosst Canada, Merck Inc.,
and Astra Zeneca Montreal are thanked for additional unrestricted
research support. D.R.S thanks NSERC for a postdoctorate scholar-
ship.
Supporting Information Available: Experimental procedures and
spectroscopic characterization of all new products. This material is
(11) For a stoichiometric precedent with similar substrates, see ref 5b.
(12) (a) Sloan, O. D.; Thornton, P. Inorg. Chim. Acta 1986, 120, 173. (b)
Brandon, R. W.; Claridge, D. V. J. Chem. Soc., Chem. Commun. 1968,
677.
(13) (a) Orito, K.; Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.;
Yuguchi, M.; Yamashita, S.; Tokuda, M. J. Am. Chem. Soc. 2004, 126,
14342. (b) Chen, X.; Li, J.-J.; Hao, X. S.; Goodhue, C. E.; Yu, J.-Q. J.
Am. Chem. Soc. 2006, 128, 78.
References
(1) For recent reviews, see: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem.
ReV. 2007, 107, 174. (b) Seregin, I. V.; Gevorgyan, V. J. Chem. Soc.,
Chem. ReV. 2007, 36, 1173. (c) Campeau, L.-C.; Stuart, D. R.; Fagnou,
K. Aldrichimica Acta 2007, 40, 35.
JA0745862
9
J. AM. CHEM. SOC. VOL. 129, NO. 40, 2007 12073