142–164; (c) W. Ch. Mak, K. Y. Cheung and D. Trau, Adv. Funct.
Mater., 2008, 18, 2930–2937; (d) M. Germain, S. Grube, V. Carriere,
H. Richard-Foy, M. Winterhalter and D. Fournier, Adv. Mater.,
2006, 18, 2868–2871; (e) G. Baier, A. Musyanovych, M. Dass,
S. Theisinger and K. Landfester, Biomacromolecules, 2010, 11,
960–968; (f) D. Crespy, M. Stark, C. Hoffmann-Richter,
U. Ziener and K. Landfester, Macromolecules, 2007, 40,
3122–3135; (g) K. Y. Kwona, J. Youna, J. H. Kim, Y. Park,
Ch. Jeon, B. Ch. Kim, Y. Kwon, X. Zhao, P. Wang, B. I. Sang,
J. Lee, H. G. Park, H. N. Chang, T. Hyeon, S. Ha, H.-T. Jung and
J. Kim, Biosens. Bioelectron., 2010, 26, 655–660; (h) E. Donath,
G. B. Sukhorukov, F. Caruso, S. A. Davis and H. Mohwald,
¨
Angew. Chem., Int. Ed., 1998, 37, 2201–2205; (i) L. J. De Cock,
S. De Koker, B. G. De Geest, J. Grooten, Ch. Vervaet, J. P. Remon,
G. B. Sukhorukov and M. N. Antipina, Angew. Chem., Int. Ed.,
2010, 49, 6954–6973; (j) M. F. Bedard, B. G. De Geest,
´
A. G. Skirtach, H. Mohwald and G. B. Sukhorukov, Adv. Colloid
¨
Interface Sci., 2010, 158, 2–14.
2 (a) S. A. Dergunov and E. Pinkhassik, Angew. Chem., Int. Ed., 2008,
47, 8264–8267; (b) D. C. Danila, L. T. Banner, E. J. Karimova,
L. Tsurkan, X. Wang and E. Pinkhassik, Angew. Chem., Int. Ed.,
2008, 47, 7036–7039; (c) S. A. Dergunov, K. Kesterson, W. Li,
Z. Wang and E. Pinkhassik, Macromolecules, 2010, 43, 7785–7792;
(d) S. A. Dergunov, B. Miksa, B. Ganus, E. Lindner and
E. Pinkhassik, Chem. Commun., 2010, 46, 1485–1487;
(e) S. N. Shmakov and E. Pinkhassik, Chem. Commun., 2010, 46,
7346–7348.
3 (a) S. Horike, S. Shimomura and S. Kitagawa, Nat. Chem., 2009, 1,
695–704; (b) M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank and
M. Eddaoudi, J. Am. Chem. Soc., 2008, 130, 12639–12641;
(c) A. D. Price, A. N. Zelikin, K. L. Wark and F. Caruso, Adv.
Mater., 2010, 22, 720–723; (d) K. Mori, K. Kagohara and
H. Yamashita, J. Phys. Chem. C, 2008, 112, 2593–2600;
Fig. 3 Black line: UV-vis spectra of supernatant taken from a sample
containing nanocapsules with entrapped MnTTPCl (inset, sample 3).
Red line: supernatant mixed with free MnTTPCl added in the
concentration corresponding to the release of 10% of entrapped
MnTTPCl (0.7 mM). Inset: blank nanocapsules (1), nanocapsules with
entrapped H2TTP (2), and nanocapsules with entrapped MnTTPCl (3)
in methanol.
by atomic absorption spectroscopy. In similar experiments, no
release of H2TTP, ZnTTP, and FeTTP was observed. Long-
term retention of the entrapped porphyrin molecules confirms
the successful implementation of the underlying idea of this
study, the combined assembly and entrapment of molecules in
porous nanocapsules. The ability to vary the pore size by using
different pore-forming templates, demonstrated previously,2b
will permit tuning the pores for entrapment of different
molecules. This approach is likely to be broadly applicable
to various molecules assembled from small building blocks,
including organometallic complexes, macrocycles, etc.
¨
(e) T. Doussineau, M. Smaıhi, S. Balme and J.-M. Janot,
ChemPhysChem, 2006, 7, 583–589; (f) M. Silva, M. E. Azenha,
M. M. Pereira, H. D. Burrows, M. Sarakha, C. Forano,
M. F. Ribeiro and A. Fernandes, Appl. Catal. B: Environ., 2010,
100, 1–9; (g) E. Kockrick, T. Lescouet, E. V. Kudrik, A. B. Sorokin
and D. Farrusseng, Chem. Commun., 2011, 47, 1562–1564.
4 (a) P. Battioni, J. P. Renaud, J. F. Bartoli, M. Reina-Artiles,
M. Fort and D. Mansuy, J. Am. Chem. Soc., 1988, 110,
8462–8470; (b) C.-M. Che and J.-S. Huang, Chem. Commun.,
2009, 3996–4015; (c) S. Sakaki, T. Sagara, T. Arai, T. Kojima,
T. Ogata and K. Ohkubo, J. Mol. Catal., 1992, 75, L33–L37;
(d) R. Naik, P. Joshi, S. Umbarkar and R. K. Deshpande, Catal.
Commun., 2005, 6, 125–129.
In summary, we showed that the size-selective pores in the
walls of hollow nanocapsules enable simultaneous assembly
and entrapment of molecules. In this approach, building
blocks that are smaller than the pore size enter the nano-
capsule and assemble into a molecule with the cross section
exceeding the pore size. This newly assembled molecule
remains entrapped within the nanocapsule. Porous walls
permit unhindered communication of entrapped molecules
with external components that are smaller than the pores.
This work was supported by NSF (CHE-1012951) and a
FedEx Institute of Technology Innovation Award.
5 (a) X.-B. Zhang, C.-C. Guo, Z.-Z. Li, G.-L. Shen and R.-Q. Yu,
Anal. Chem., 2002, 74, 821–825; (b) B.-H. Han, I. Manners and
M. A. Winnik, Chem. Mater., 2005, 17, 3160–3171.
6 (a) L. J. Twyman and Yi Ge, Chem. Commun., 2006, 1658–1660;
(b) D.-L. Jiang and T. Aida, Chem. Commun., 1996, 1523–1524.
7 (a) A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher,
J. Assour and L. Korsakoff, J. Org. Chem., 1967, 32, 476;
(b) K. M. Kadish, K. M. Smith and R. Guilard, The Porphyrin
Handbook, Academic Press, San Diego, 2000; (c) P. Rothemund and
A. R. Menotti, J. Am. Chem. Soc., 1948, 70, 1808–1812;
(d) E. B. Fleischer, J. M. Palmer, T. S. Srivastava and
A. Chatterjee, J. Am. Chem. Soc., 1971, 93, 3162–3167.
8 G. D. Dorough, J. R. Miller and F. M. Huennekens, J. Am. Chem.
Soc., 1951, 73, 4315.
9 (a) E. M. Mhuircheartaigh, W. J. Blau, M. Prato and S. Giordani,
Phys. Status Solidi B, 2007, 244(11), 4227–4230; (b) E. M.
Mhuircheartaigh, W. J. Blau, M. Prato and S. Giordani, Carbon,
2007, 45, 2665–2671.
Notes and references
1 (a) T. S. Koblenz, J. Wassenaar and J. N. H. Reek, Chem. Soc. Rev.,
2008, 37, 247–262; (b) W. J. M. Mulder, G. J. Strijkers, G. A. F. van
Tilborg, A. W. Griffioen and K. Nicolay, NMR Biomed., 2006, 19,
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 8223–8225 8225