Angewandte Chemie International Edition
10.1002/anie.201910052
COMMUNICATION
only tiny amounts of reagents. Given that DMF can automate
reactions and NMR provide unparalleled de novo structure
elucidation, it is more a question of when DMF-NMR with
become an everyday tool in organic chemistry research rather
than if.
Experimental Section
Details are provided in the supporting information
Acknowledgements
We would like to thank the National Science and Engineering
Research Council (NSERC) (STPGP 494273-16), the Canada
Foundation for Innovation (CFI), the Ontario Ministry of
Research and Innovation (MRI), and the Krembil Foundation for
providing funding. A.S. would like to thank the Government of
Ontario for an Early Researcher Award. A.R.W. thanks the
Canada Research Chairs (CRC) Association for a CRC.
Figure
4. DMF-NMR for analysis of reactions in volatile solvents. (a)
Keywords: Digital Microfluidics • reaction monitoring • NMR •
Representative spectra collected during the Knoevenagel condensation and
Michael addition of BA ([BA] = 0.1 M) to form TKs, with peaks highlighted that
represent BA protons (red) and TK protons (blue). (b) Concentrations as a
function of time extrapolated from peaks BA (red squares) and TK (blue
circles). (Detailed chemical shift assignment in Fig. S8-9.) (c) The integrated
peak area as a function of time I(t) relative to the initial integrated peak area
I(0) for the peak corresponding to the internal standard TMS as a function of
time.
hydrolysis • rapid reaction
[1]
a) J. Berthier, Micro-drops and digital microfluidics, Second edition. ed.,
Elsevier/WA, Amsterdam, 2013; b) K. Choi, A. H. C. Ng, R. Fobel, A. R.
Wheeler, Annu Rev Anal Chem 2012, 5, 413-440.
[
[
2]
3]
a) H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, C. J. Kim, Lab on a
chip 2006, 6, 1213-1219; b) V. N. Luk, A. R. Wheeler, Analytical
chemistry 2009, 81, 4524-4530.
a) K. Choi, A. H. C. Ng, R. Fobel, D. A. Chang-Yen, L. E. Yarnell, E. L.
Pearson, C. M. Oleksak, A. T. Fischer, R. P. Luoma, J. M. Robinson, J.
Audet, A. R. Wheeler, Analytical chemistry 2013, 85, 9638-9646; b) L.
Coudron, M. B. McDonnell, I. Munro, D. K. McCluskey, I. D. Johnston,
C. K. L. Tan, M. C. Tracey, Biosensors & Bioelectronics 2019, 128, 52-
In conclusion, this communication demonstrates
a unique
application of DMF-NMR: fast reaction monitoring of organic
reactions in organic solvents. By pre-shimming on a reaction
droplet, the reaction can be monitored immediately on mixing
allowing reactions with rapid kinetics to be monitored. The small
volumes inherent to DMF allow the use of tiny amounts of
reagents, for example. for the tandem Knoevenagel
condensation and Michael addition, each unit-droplet covering a
single electrode (911 nL) contained 6.3 µg of DIM and 9.4 µg of
BA, while in the active volume above the coil (136 nl) only 0.94
µg and 1.4 µg were needed for NMR detection. As such this
opens up the possibility of studying various reaction conditions
using NMR, even with limited or precious reagents. Here the
DMF-NMR measured reaction rate constants that are consistent
with literature values indicating the rate determined at μL-volume,
still follows the expected chemical kinetics observed with larger
volumes.
6
0.
[4]
a) M. J. Jebrail, A. H. C. Ng, V. Rai, R. Hili, A. K. Yudin, A. R. Wheeler,
Angew Chem Int Edit 2010, 49, 8625-8629; b) P. Y. Keng, S. P. Chen,
H. J. Ding, S. Sadeghi, G. J. Shah, A. Dooraghi, M. E. Phelps, N.
Satyamurthy, A. F. Chatziioannou, C. J. Kim, R. M. van Dama,
Proceedings of the National Academy of Sciences of the United States
of America 2012, 109, 690-695; c) M. Torabinia, P. Asgari, U. s.
Dakarapu, J. Jeon, H. Moon, Lab on a chip 2019 In Press.
a) A. H. C. Ng, M. D. Chamberlain, H. Situ, V. Lee, A. R. Wheeler, Nat
Commun 2015, 6; b) M. Y. Chiang, Y. W. Hsu, H. Y. Hsieh, S. Y. Chen,
S. K. Fan, Sci Adv 2016, 2.
[
[
5]
6]
J. Fiaux, E. B. Bertelsen, A. L. Horwich, K. Wuthrich, Nature 2002, 418,
207-211.
[7]
8]
C. L. Perrin, T. J. Dwyer, Chem Rev 1990, 90, 935-967.
I. Swyer, R. Soong, M. D. M. Dryden, M. Fey, W. E. Maas, A. Simpson,
A. R. Wheeler, Lab on a chip 2016, 16, 4424-4435.
I. Swyer, S. von der Ecken, B. Wu, A. Jenne, R. Soong, F. Vincent, D.
Schmidig, T. Frei, F. Busse, H. J. Stronks, A. J. Simpson, A. R.
Wheeler, Lab on a chip 2019, 19, 641-653.
[
[9]
[
[
10] B. Hadwen, G. R. Broder, D. Morganti, A. Jacobs, C. Brown, J. R.
Hector, Y. Kubota, H. Morgan, Lab on a chip 2012, 12, 3305-3313.
11] a) R. G. Bergstrom, M. J. Cashen, Y. Chiang, A. J. Kresge, J Org Chem
1979, 44, 1639-1642; b) J. Kerovuo, J. Rouvinen, F. Hatzack, Biochem
J 2000, 352, 623-628.
12] a) R. F. Storey, A. B. Donnalley, T. L. Maggio, Macromolecules 1998,
In future, the possibility of using larger DMF chips could
provide the space for numerous reagents as-well as solvent
reservoirs. Seeing as mixing and movement of the chemicals is
fully computer controlled and automated, this opens up the
potential for DMF with NMR detection as a synthetic “discovery
tool”, where a wide range of reagents could be mixed and
monitored to either characterize a known reaction in detail or
search for novel reactions and unexpected products while using
[
31, 1523-1526; b) D. Gracin, V. Strukil, T. Friscic, I. Halasz, K. Uzarevic,
Angew Chem Int Edit 2014, 53, 6193-6197.
[
[
[
13] G. L. Closs, R. J. Miller, J Am Chem Soc 1981, 103, 3586-3588.
14] C. A. Muller, A. Pfaltz, Angew Chem Int Edit 2008, 47, 3363-3366.
15] a) C. Massin, F. Vincent, A. Homsy, K. Ehrmann, G. Boero, P. A. Besse,
A. Daridon, E. Verpoorte, N. F. de Rooij, R. S. Popovic, J Magn Reson
2
003, 164, 242-255; b) I. Fugariu, R. Soong, D. Lane, M. Fey, W. Maas,
F. Vincent, A. Beck, D. Schmidig, B. Treanor, A. J. Simpson, Analyst
017, 142, 4812-4824.
2
This article is protected by copyright. All rights reserved.