Page 3 of 4
PleaseRd So Cn oA t da vd aj un s ct ems argins
DOI: 10.1039/C5RA11817D
ChemComm
COMMUNICATION
coupling reaction under ambient aerobic conditions; accelerating
Acknowledgement
0
oxidative addition of Pd with aryl halide by peptide ligand having
This work was supported by Samsung Research Funding Center of
Samsung Electronics under Project Number SRFC-MA1401-01.
29
steric and proper electronic property, and enhancing the
3
0
formation of arylalkynylpalladium species
.
a
Table 1. Aqueous copper-free Sonogashira cross-coupling reaction using Pd NFs.
Notes and references
b
Yield
Entry
1
Aryl halide
Alkyne
Product
1
2
.
.
S. Mann, Nature, 1993, 365, 499-505.
B. R. Heywood, Nature, 1991, 349.
(
%)
96
81
3. C.-L. Chen, P. Zhang and N. L. Rosi, J. Am. Chem. Soc., 2008, 130,
3555-13557.
1
4
5
6
7
8
9
1
.
.
.
.
.
.
Y. Su, Q. He, X. Yan, J. Fei, Y. Cui and J. Li, Chemistry-A European
Journal, 2011, 17, 3370-3375.
T. Vinod, S. Zarzhitsky, A. Morag, L. Zeiri, Y. Levi-Kalisman, H.
Rapaport and R. Jelinek, Nanoscale, 2013, 5, 10487-10493.
D. Gottlieb, S. A. Morin, S. Jin and R. T. Raines, J. Mater. Chem.,
2
3
4
5
97
93
82
2
008, 18, 3865-3870.
C. J. Carter, C. J. Ackerson and D. L. Feldheim, ACS nano, 2010,
, 3883-3888.
4
M. Rubio-Martínez, J. Puigmartí-Luis, I. Imaz, P. S. Dittrich and
D. Maspoch, Small, 2013, 9, 4160-4167.
D. B. Pacardo, M. Sethi, S. E. Jones, R. R. Naik and M. R. Knecht,
ACS nano, 2009, 3, 1288-1296.
0. A. Jakhmola, R. Bhandari, D. B. Pacardo and M. R. Knecht, J.
Mater. Chem., 2010, 20, 1522-1531.
a
Reactions were performed using 0.5 mmol substrate, 2.5 eq. triethylamine, and
b
0
.5 mol% Pd NFs in water (10 mL). Determined by GC-MS through the corrected
11. R. Bhandari and M. R. Knecht, ACS Catalysis, 2011, 1, 89-98.
12. C.-Y. Chiu, Y. Li, L. Ruan, X. Ye, C. B. Murray and Y. Huang,
Nature chemistry, 2011, 3, 393-399.
normalization of peak areas.
As shown in Table 1, a copper-free Sonogashira cross-coupling 13. L. Ruan, H. Ramezani-Dakhel, C.-Y. Chiu, E. Zhu, Y. Li, H. Heinz
reaction catalyzed by Pd NFs was successfully performed in an
aqueous condition. Coupling reactions of iodobenzene with two
different alkynes (1-phenylacetylene and 1-ethyne-1-cyclohexanol)
generated the corresponding products in 96 % and 81 % yields,
respectively (entries 1 and 2). The catalyst was reused at least 4
times without structural collapse and significant loss of activity for
the reaction with 1-phenylacetylene (Figure S5); the yields were
over 91 % during the recycling. This catalytic system worked very
well even though electron withdrawing substituents exist in the
phenyl ring for the coupling reaction (entry 3). Three types of aryl
and Y. Huang, Nano Lett., 2013, 13, 840-846.
4. L. Ruan, E. Zhu, Y. Chen, Z. Lin, X. Huang, X. Duan and Y. Huang,
Angew. Chem. Int. Ed., 2013, 52, 12577-12581.
1
1
1
1
1
5. I. A. Banerjee, L. Yu and H. Matsui, Proc. Natl. Acad. Sci. U.S.A.,
2
003, 100, 14678-14682.
6. S. S. K. Dasa, Q. Jin, C.-T. Chen and L. Chen, Langmuir, 2012, 28,
7372-17380.
1
7. H.-S. Jang, J.-H. Lee, Y.-S. Park, Y.-O. Kim, J. Park, T.-Y. Yang, K.
Jin, J. Lee, S. Park and J. M. You, Nat. Commun., 2014, 5, 3665.
8. I. McConnell, G. Li and G. W. Brudvig, Chem. Biol., 2010, 17,
434-447.
iodides were reacted with phenylacetylene, producing the 19. R. Coppage, J. M. Slocik, B. D. Briggs, A. I. Frenkel, R. R. Naik and
corresponding cross-coupling products in high yields over 93 %
entries 1 and 3, 4). Furthermore, the Pd NFs performed well in
M. R. Knecht, ACS Nano, 2012, 6, 1625-1636.
0. K. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem. Int. Ed.,
2
2
2
(
2
005, 44, 4442-4489.
1. A. Mohanty, N. Garg and R. Jin, Angew. Chem. Int. Ed., 2010, 49,
962-4966.
coupling reactions with heteroatom containing alkyne affording
high yield (entry 5). Thus, we proved that the Sonogashira cross-
coupling reaction was widely tolerable with various aryl iodides in
the water system. These results are in good agreement with the
4
2. P. Selvakannan, A. Swami, D. Srisathiyanarayanan, P. S. Shirude,
R. Pasricha, A. B. Mandale and M. Sastry, Langmuir, 2004, 20,
0
previous report that stabilizer and supporting materials around Pd
7
825-7836.
can prevent undesired aggregates and improved catalytic
2
2
3. T. Teranishi and M. Miyake, Chem. Mater., 1998, 10, 594-600.
4. A. K. Chen and R. W. Woody, J. Am. Chem. Soc., 1971, 93, 29-37.
25. R. W. Woody, Biopolymers, 1978, 17, 1451-1467.
31
performance. In addition, the Glaser-type oxidative homocoupling
side-reaction could be avoided due to not using copper salt.
In summary, we present a simple method for preparation of Pd 26. M. Jackson and H. H. Mantsch, Crit. Rev. Biochem. Mol. Biol.,
nanostructure with a flower-like morphology using the Tyr-H7mer
peptide template. The peptide folding and the interaction of Pd ions
with His residues in the Tyr-H7mer are crucial for the nucleation
and growth of Pd NPs to the Pd NFs. The Pd NFs are very reactive in
copper-free Sonogashira cross-coupling reactions in an eco-friendly
water solvent system. We demonstrate that controlling the
morphology of metal NPs by redox active peptide is a novel method
to fabricate a new type of metal-peptide hybrid catalysts.
1995, 30, 95-120.
7. P. Juszczyk, A. S. Kołodziejczyk and Z. Grzonka, J. Pept. Sci.,
2
2
009, 15, 23-29.
2
2
8. A. Barth, Prog. Biophys. Mol. Biol., 2000, 74, 141-173.
9. N. S. Nandurkar and B. M. Bhanage, Tetrahedron, 2008, 64,
3
655-3660.
3
0. J. Cheng, Y. Sun, F. Wang, M. Guo, J.-H. Xu, Y. Pan and Z. Zhang,
J. Org. Chem., 2004, 69, 5428-5432.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins