Y.-L. Zhong et al. / Tetrahedron Letters 46 (2005) 1099–1101
1101
J. Heterocycl. 1982, 19, 653–656; (k) Claxton, G. P.; Allen,
L.; Grisar, J. M. Org. Synth. 1988, 67, 968; (l) Arakawa, Y.;
Yoshifuji, S. Chem. Pharm. Bull. 1991, 39, 2219–2224; (m)
Snider, B. B.; Liu, T. J. Org. Chem. 1997, 62, 5630–5633;
(n) Zhao, M. M.; McNamara, J. M.; Ho, G.-J.; Emerson,
K. M.; Song, Z. J.; Tschaen, D. M.; Brands, K. M. J.;
Dolling, U. H.; Grabowski, E. J. J.; Reider, P. J. J. Org.
Chem. 2002, 67, 6743–6747; (o) Durham, T. B.; Miller, M.
J. J. Org. Chem. 2003, 68, 27–34.
amino amide (entries 13 and 14) was selectively oxidized
at the amine N–H. Finally, a primary amine (entry 16)
was selectively monochlorinated in 96% yield. Dichlori-
nated product was not detected.
In summary, we have developed a practical, efficient and
scaleable synthesis for the preparation of a wide range
N-halo compounds.6 tert-Butyl hypohalite is generated
in situ by treatment of sodium hypohalite with tert-buta-
nol in the presence of acid. The reaction is carried out
under mild conditions and produces N-halo compounds
in excellent purity and high yield. This method offers an
alternative to hazardous tert-butyl hypochlorite and
should find wide use for the oxidation of amines and
amides.
3. Fieser, M. In Reagents for Organic Synthesis; John Wiley
and Sons: New York, 1982; Vol. 10, p 67.
4. Paquette, L. A. In Encyclopedia of Reagents for Organic
Synthesis; John Wiley and Sons: New York, 1995; Vol. 2, p
890.
5. Typical procedure for the preparation of N-halo com-
pounds: To a solution of amine or amide (5.0 mmol), tert-
butanol (0.25–1 equiv) in MTBE was slowly added acetic
acid (1–1.5 equiv) and sodium hypohalite (1–1.5 equiv) at
À5 to 0 °C at the same time. The resulting solution was
aged at 0 °C for 15 min to 2 h. The organic layer was
separated, washed with water, and then brine. The organic
solution was concentrated to give desired N-halo com-
pound in 90–100% yield.
References and notes
1. (a) Kovacic, P.; Lowery, M. K.; Field, K. W. Chem. Rev.
1970, 70, 639–665; (b) Barton, D. H. R.; Ollis, W. D. In
Comprehensive Organic Chemistry; Pergamon: Oxford,
1979; Vol. 2, pp 1030–1031; (c) Stella, L. Angew. Chem.,
Int. Ed. Engl. 1983, 22, 337–422; (d) Guillemin, J. C.; Denis,
J. M. Angew. Chem., Int. Ed. Engl. 1982, 21, 690–691; (e)
Daoust, B.; Lessard, J. Tetrahedron 1999, 55, 3495–3514; (f)
Cossy, J.; Tresnard, L.; Pardo, D. G. Tetrahedron Lett.
1999, 40, 1125–1128; (g) Favreau, S.; Lizzani-Cuvelier, L.;
Loiseau, M.; Dunach, E.; Fellous, R. Tetrahedron Lett.
2000, 41, 9787–9790; (h) Uskokovic, M.; Henderson, T.;
Reese, C.; Lee, H. L.; Grethe, G.; Gutzwiller, J. J. Am.
Chem. Soc. 1978, 100, 571–576.
2. (a) Zakrzewski, J. Synth. Commun. 1988, 18, 2135; (b)
Poisel, H.; Schmidt, U. Chem. Ber. 1975, 108, 2547–2553;
(c) Lasne, M. C.; Ripoll, J. L.; Guillemin, J. C.; Denis, J. M.
Tetrahedron Lett. 1984, 25, 3847–3848; (d) Curini, M.;
Epifano, F.; Marcotullio, M. C.; Rosati, O.; Tsadjout, A.
Synlett 2000, 813–814; (e) Guillemin, J. C.; Denis, J. M.
Synthesis 1985, 1131–1133; (f) Kimura, M.; Ban, Y.
Synthesis 1976, 201–202; (g) Schneider, W.; Pomorin, D.
K. Chem. Ber. 1972, 105, 1553–1561; (h) Grundon, M. F.;
Reynolds, B. E. J. Chem. Soc. 1963, 3898–3899; (i)
Gassman, P. G.; Dygos, D. K.; Trent, J. E. J. Am. Chem.
Soc. 1970, 92, 2084–2090; (j) Scully, F. E., Jr.; Schlager, J.
6. All new compounds gave satisfactory analytical and spec-
tral data in accordance to their structures. Selected data for
compound 4: 1H NMR (400 MHz, CDCl3) d: 7.44–7.34 (m,
5H), 5.27 (s, 2H), 4.53 (dd, J = 5.9, 2.7 Hz, 1H), 3.40 (dd,
J = 13.6, 5.9 Hz, 1H), 3.21 (dd, J = 13.6, 2.7 Hz, 1H); 13C
NMR (100 MHz, CDCl3) d: 168.1, 164.8, 134.7, 128.9 (2C),
1
128,8, 128.5 (2C), 68.0, 57.4, 43.4. Compound 5: H NMR
(400 MHz, CDCl3) d: 7.40–7.30 (m, 5H), 5.21 (s, 2H), 4.27
(dd, J = 5.9, 2.7 Hz, 1H), 3.46 (dd, J = 13.3, 5.9 Hz, 1H),
3.29 (dd, J = 13.3, 2.7 Hz, 1H); 13C NMR (100 MHz,
CDCl3) d: 168.5, 166.0, 134.7, 128.7 (2C), 128.5, 127.0.
Compound 15: 1H NMR (400 MHz, CDCl3) d: 6.58 (s, 2H),
4.19 (q, J = 6.6 Hz, 1H), 3.85 (s, 6H), 3.63 (m, 1H), 3.38 (m,
1H), 3.00–2.89 (m, 2H), 1.56 (d, J = 6.6 Hz, 3H); 13C NMR
(100 MHz, CDCl3) d: 148.0, 147.7, 129.7, 124.5, 111.1,
1
109.7, 65.3, 56.1, 55.9, 55.3, 27.1, 21.6. Compound 16: H
NMR (400 MHz, CDCl3) d: 7.39–7.19 (m, 3H), 7.12 (br d,
J = 7.0 Hz, 2H), 4.62 (d, J = 9.2 Hz, 1H), 4.20 (q, J =
7.2 Hz, 2H), 3.89 (td, J = 9.2, 6.8 Hz, 1H), 3.04
(d, J = 6.8 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H); 13C NMR
(100 MHz, CDCl3) d: 171.9, 135.8, 129.2 (2C), 128.6 (2C),
127.1, 68.4, 61.5, 37.9, 14.1.