J. Meléndez, M. North, R. Pasquale
SHORT COMMUNICATION
[9] For reviews of cyclic carbonate synthesis, see: a) M. Yoshida,
M. Ihara, Chem. Eur. J. 2004, 10, 2886–2893; b) J. Sun, S. Fu-
jita, M. Arai, J. Organomet. Chem. 2005, 690, 3490–3497.
[10] Unmetallated salen ligands will also catalyse this reaction, but
only at high pressures (Ͼ30 atm) and high temperatures
(Ͼ100 °C): Y. M. Shen, W. L. Duan, M. Shi, Eur. J. Org. Chem.
2004, 3080–3089.
Experimental Section
Experimental details for the synthesis of catalysts 1a–h and cyclic
carbonates 3a–e are given in the Supporting Information.
Supporting Information (see footnote on the first page of this arti-
cle): Full experimental details and characterising data for the syn-
thesis of catalysts 1a–h and cyclic carbonates 3a–e.
[11] a) X.-B. Lu, X.-J. Feng, R. He, Appl. Catal. A 2002, 234, 25–
34; b) X.-B. Lu, R. He, C.-X. Bai, J. Mol. Catal. A 2002, 186,
1–11; c) X.-B. Lu, Y.-J. Zhang, B. Liang, X. Li, H. Wang, J.
Mol. Catal. A 2004, 210, 31–34; d) X.-B. Lu, Y.-J. Zhang, K.
Jin, L.-M. Luo, H. Wang, J. Catal. 2004, 227, 537–541; e) M.
Alvaro, C. Baleizao, E. Carbonell, M. El Ghoul, H. García, B.
Gigante, Tetrahedron 2005, 61, 12131–12139; f) G. A. Luinstra,
G. R. Haas, F. Molnar, V. Bernhart, R. Eberhardt, B. Rieger,
Chem. Eur. J. 2005, 11, 6298–6314.
Acknowledgments
The authors thank Newcastle University for a studentship (to
R. P.), the Engineering and Physical Sciences Research Council
(EPSRC) for funding and the EPSRC national mass spectrometry
service at the University of Wales, Swansea for recording mass
spectra.
[12] Y.-M. Shen, W.-L. Duan, M. Shi, J. Org. Chem. 2003, 68, 1559–
1562.
[13] a) X.-B. Lu, J.-H. Xiu, R. He, K. Jin, L.-M. Luo, X.-J. Feng,
Appl. Catal. A 2004, 275, 73–78; b) R. L. Paddock, S. T.
Nguyen, Chem. Commun. 2004, 1622–1623; c) X.-B. Lu, B. Li-
ang, Y.-J. Zhang, Y.-Z. Tian, Y.-M. Wang, C.-X. Bai, H. Wang,
R. Zhang, J. Am. Chem. Soc. 2004, 126, 3732–3733; d) X.-B.
Lu, Y. Wang, Angew. Chem. Int. Ed. 2004, 43, 3574–3577.
[14] For the kinetic resolution of propylene oxide using Co(salen)
complexes, see: A. Berkessel, M. Brandenburg, Org. Lett. 2006,
8, 4401–4404.
[15] a) R. L. Paddock, S. T. Nguyen, J. Am. Chem. Soc. 2001, 123,
11498–11499; b) D. J. Darensbourg, J. C. Yarbrough, C. Ortiz,
C. C. Fang, J. Am. Chem. Soc. 2003, 125, 7586–7591; c) M.
Alvaro, C. Baleizao, D. Das, E. Carbonell, H. García, J. Catal.
2004, 228, 254–258.
[16] H. Jing, S. K. Edulji, J. M. Gibbs, C. L. Stern, H. Zhou, S. T.
Nguyen, Inorg. Chem. 2004, 43, 4315–4327.
[17] For a review of this work, see: T. R. J. Achard, L. A. Clut-
terbuck, M. North, Synlett 2005, 1828–1847.
[18] S. J. Dzugan, V. L. Goedken, Inorg. Chem. 1986, 25, 2858–
2864.
[19] For a leading reference, see: E. P. Balskus, E. N. Jacobsen, J.
Am. Chem. Soc. 2006, 128, 6810–6812.
[20] D. Rutherford, D. A. Atwood, Organometallics 1996, 15, 4417–
4422.
[21] Y. Wang, S. Bhandari, S. Parkin, D. A. Atwood, J. Organomet.
Chem. 2004, 689, 759–765.
[22] For mechanistic studies on the reaction between propylene ox-
ide and carbon dioxide at room temperature and 1 atm pres-
sure with long reaction times, see: a) K. Kasuga, S. Nagao,
T. Fukumoto, M. Handa, Polyhedron 1996, 15, 69–72; b) H.
Sugimoto, T. Kimura, S. Inoue, J. Am. Chem. Soc. 1999, 121,
2325–2326.
[1]
For a detailed analysis of this issue from a chemical catalysis
perspective, see: H. Arakawa, M. Aresta, J. N. Armor, M. A.
Barteau, E. J. Beckman, A. T. Bell, J. E. Bercaw, C. Creutz, E.
Dinjus, D. A. Dixon, K. Domen, D. L. DuBois, J. Eckert, E.
Fujita, D. H. Gibson, W. A. Goddard, D. W. Goodman, J. Kel-
ler, G. J. Kubas, H. H. Kung, J. E. Lyons, L. E. Manzer, T. J.
Marks, K. Morokuma, K. M. Nicholas, R. Periana, L. Que, J.
Rostrup-Nielson, W. M. H. Sachtler, L. D. Schmidt, A. Sen,
G. A. Somorjai, P. C. Stair, B. R. Stults, W. Tumas, Chem. Rev.
2001, 101, 953–996.
[2]
a) X. Xiaoding, J. A. Moulijin, Energy Fuels 1996, 10, 305–325;
b) M. Pervaiz, M. M. Sain, Resour., Conserv. Recycl. 2003, 39,
325–340 and references cited therein.
[3]
[4]
M. Aresta, A. Dibenedetto, Catal. Today 2004, 98, 455–462.
For reviews of the potential utilisation of atmospheric carbon
dioxide, see: a) A. Baiker, Appl. Organomet. Chem. 2000, 14,
751–762; b) I. Omae, Catal. Today 2006, 115, 33–52; c) R. Zev-
enhoven, S. Eloneva, S. Teir, Catal. Today 2006, 115, 73–79.
[5] For a review of polycarbonate synthesis, see: G. W. Coates,
D. R. Moore, Angew. Chem. Int. Ed. 2004, 43, 6618–6639.
[6] For a review of the use of metal(salen) complexes in the synthe-
sis of polycarbonates, see: D. J. Darensbourg, R. M. Mackiew-
icz, A. L. Phelps, D. R. Billodeaux, Acc. Chem. Res. 2004, 37,
836–884.
[7] For a review of the reaction between epoxides and CO2, see:
D. J. Darensbourg, M. W. Holtcamp, Coord. Chem. Rev. 1996,
153, 155–174.
[8] For leading references, see: a) R. I. Kureshy, S. Singh, N. H.
Khan, S. H. R. Abdi, I. Ahmed, A. Bhatt, R. V. Jasra, Catal.
Lett. 2006, 107, 127–130; b) K. Matsumoto, Y. Sawada, T. Kat-
suki, Synlett 2006, 3545–3547; c) H. Shitama, T. Katsuki, Tet-
rahedron Lett. 2006, 47, 3203–3207.
[23] a) M. Ratzenhofer, H. Kisch, Angew. Chem. Int. Ed. Engl.
1980, 19, 317–318; b) H. Kisch, R. Millini, I.-J. Wang, Chem.
Ber. 1986, 119, 1090–1094.
Received: May 16, 2007
Published Online: June 21, 2007
3326
www.eurjic.org
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2007, 3323–3326