LETTER
Synthesis of (–)-Hennoxazole A
517
for this process employed the second-generation Grubbs Acknowledgment
catalyst and CH Cl as solvent, while heating at 60 °C in
a sealed tube which furnished 24 in 59% yield or 80%
based on recovered starting material (Scheme 5).
2
2
We are grateful to the Marie Curie Intra-European Fellowship
within the 7 European Community Framework Programme (A.F.),
th
the Williams College for a Dr Herchel Smith Fellowship (Z.G.L),
the Ralph Raphael studentship award (M.B.), the Swiss National
Science Foundation (S.S.-M. and C.S.), the Royal Society (I.R.B.),
the BP Endowment (S.V.L.), and the EPSRC EP/F0693685/1 for fi-
nancial support. Dr. Matthew L. Maddess, Dr. Malte Brasholz, and
Antti Kataja are acknowledged for alternative approaches not repor-
Final elaboration of 24 to the natural product involved de-
protection using TBAF and oxidation of the resulting free
alcohol 25 to the intermediate aldehyde using Dess–Mar-
tin periodinane. It is noteworthy that the aldehyde was not
isolated due to its potential to epimerize; rather it was used ted here.
directly in the next step.
This involved a modified Takai olefination with 1,1-diio-
doethane, giving 26 in moderate 35% yield over two steps http://www.thieme-connect.com/ejournals/toc/synlett. SupInpf oiogtrm rat
Supporting Information for this article is available online at
i
o
tnnrfmo at
o
as a single E-stereoisomer. Finally, cleavage of the PMB
2
c
ether using DDQ in a buffered solution was achieved in
References and Notes
good yield affording the natural product (–)-hennoxazole
1
5
A identical to an authentic sample (Scheme 6).
(1) Ichiba, T.; Yoshida, W. Y.; Scheuer, P. J.; Higa, T.;
Gravalos, D. G. J. Am. Chem. Soc. 1991, 113, 3173.
(
2) (a) Wipf, P.; Lim, S. J. Am. Chem. Soc. 1995, 117, 558.
b) Williams, D. R.; Brooks, D. A.; Berliner, M. A. J. Am.
24
(
TBAF
THF, 0 °C to r.t.
80%)
Chem. Soc. 1999, 121, 4924. (c) Yokokawa, F.; Asano, T.;
Shioiri, T. Tetrahedron 2001, 57, 6311. (d) Smith, T. E.;
Kuo, W.-H.; Bock, V. D.; Roizen, J. L.; Balskus, E. P.;
Theberge, A. B. Org. Lett. 2007, 9, 1153. (e) Smith, T. E.;
Kuo, W.-H.; Balskus, E. P.; Bock, V. D.; Roizen, J. L.;
Theberge, A. B.; Carroll, K. A.; Kurihara, T.; Wessler, J. D.
J. Org. Chem. 2008, 73, 142.
OPMB
O
(
OMe
N
O
OMe
H
N
O
OH
2
5
(3) (a) Bull, J. A.; Balskus, E. P.; Horan, R. A. J.; Langner, M.;
Ley, S. V. Chem. Eur. J. 2007, 13, 5515. (b) Enriquez-
Garcia, A.; Ley, S. V. Collect. Czech. Chem. Commun. 2009,
1
) Dess–Martin periodinane
CH2Cl2, 0 °C
74, 887.
2
) CrCl2, MeCHI2
DMF, THF 0 °C
(4) Baumann, M.; Baxendale, I. R.; Brasholz, M.; Hayward, J.
J.; Ley, S. V.; Nikbin, N. Synlett 2010, 1375.
5) For some recent reviews on flow synthesis of heterocycles,
(35% over 2 steps)
OPMB
O
(
OMe
see: (a) Webb, D.; Jamison, T. F. Chem. Sci. 2010, 1, 675.
(
2
b) Baumann, M.; Baxendale, I. R.; Ley, S. V. Mol. Diversity
011, 15, 613.
N
O
OMe
H
N
(6) Fürstner, A.; Kattnig, E.; Kelter, G.; Fiebig, H.-H. Chem.
Eur. J. 2009, 15, 4030.
7) (a) Reddy, K. K.; Saady, M.; Falck, J. R.; Whited, G. J. Org.
Chem. 1995, 60, 3385. (b) Chavez, D. E.; Jacobsen, E. N.
Angew. Chem. Int. Ed. 2001, 40, 3667.
O
2
6
(
DDQ
phosphate buffer pH 7
CH2Cl2
(8) Phillips, A. J.; Uto, Y.; Wipf, P.; Reno, M. J.; Williams, D.
0
°C to r.t.
OH
O
R. Org. Lett. 2000, 2, 1165.
(68%)
(
9) (a) Baumann, M.; Baxendale, I. R.; Ley, S. V. Synlett 2008,
111. (b) Baumann, M.; Baxendale, I. R.; Martin, L. J.; Ley,
S. V. Tetrahedron 2009, 65, 6611.
OMe
2
N
O
(
10) For some examples of selective reduction reactions using
diisobutylaluminum hydride in flow, see: (a) Carter, C. F.;
Lange, H.; Sakai, D.; Baxendale, I. R.; Ley, S. V. Chem. Eur.
J. 2011, 17, 3398. (b) Webb, D.; Jamison, T. F. Org. Lett.
OMe
H
N
O
1
2
012, 14, 568.
Scheme 6 Final steps
(
11) (a) Chen, Y. K.; Walsh, P. J. J. Am. Chem. Soc. 2004, 124,
3
702. (b) Huang, Z.; Negishi, E. J. Am. Chem. Soc. 2007,
In summary, the total synthesis of (–)-hennoxazole A has
been completed in 16 steps longest linear sequence and 26
steps overall. Highlights of this work include the develop-
ment of a new flow process for the synthesis of the bisox-
azole core in concert with traditional batch methods, an
efficient assembly of the three similarly sized fragments
taking advantage of organometallic processes, cross-me-
tathesis, a highly stereocontrolled boron-promoted aldol
reaction, and a stereoselective gold-promoted alkoxycy-
clization process.
129, 14788.
(12) Paterson, I.; Gibson, R. G.; Oballa, R. M. Tetrahedron Lett.
1996, 37, 8585.
13) Ricard, L.; Gagosz, F. Organometallics 2007, 26, 4704.
14) Data for Compound 2
(
(
2
9.4
Mp 74–79 °C. R = 0.34 (EtOAc–PE, 1:1); [α]
–23 (c
f
D
0.13, CHCl ). IR (neat): 3464, 2984, 2932, 2837, 2365,
3
2337, 1639, 1615, 1578, 1512, 1449, 1380, 1362, 1302,
–
1 1
1247, 1171 cm . H NMR (500 MHz, CDCl ): δ = 8.09 (1
H, s), 7.61 (1 H, s), 7.24 (2 H, d, J = 8.7 Hz), 6.86 (2 H, d, J
=
3
8.7 Hz), 5.84 (1 H, ddt, J = 17.0, 10.3, 6.6 Hz), 5.08 (1 H,
Synlett 2013, 24, 514–518
©
Georg Thieme Verlag Stuttgart · New York