TABLE 1. Conversion of 1 to 2 and 3
Sodium Bicarbonate-Catalyzed Stereoselective
Isomerizations of Electron-Deficient Propargylic
Alcohols to (Z)-Enones
John P. Sonye and Kazunori Koide*
Department of Chemistry, UniVersity of Pittsburgh,
219 Parkman AVenue, Pittsburgh, PennsylVania 15260
entry
base
solvents
CDCl3
C6D6
DMSO-d6
DMSO-d6/D2O (8:1)
DMSO-d6/H2O (8:1)
t1/2
2:3
1.2:1
1.0:1
1.6:1
3-d-2 only
2 only
1
2
3
4
5
iPr2NEt
iPr2NEt
iPr2NEt
iPr2NEt
NaHCO3
60
126
12
n.d.
n.d.
ReceiVed NoVember 21, 2006
important substrates in Diels-Alder cycloadditions17-19 and
potentially in many other cycloaddition reactions. Z- and E-γ-
oxo-R,â-alkenyl esters B and C are interesting electrophiles as
a result of their distinct reactivities, with the greater electro-
philicity of C compared to that of B.20 Presumably because of
such differences, they exhibit distinct biological activities.20
These distinctive chemical reactivities and biological activities
prompted us to develop divergent synthetic methods to prepare
a range of analogs B and C from common intermediates A.
We have recently reported the stereoselective isomerization
of A (and other electron-deficient propargylic alcohols) to C
using catalytic DABCO.21,22 Despite the synthetic and biological
importance of esters B, the only general approach toward B is
the oxidation of 2-alkoxyfurans that are not readily accessible.23
Presumably for this reason, the full synthetic and biological
potential of B has not yet been explored. In this paper, we wish
to describe a convenient and highly stereoselective method to
produce B from readily available A.24,25 This is the first
stereoselective isomerization of electron-deficient propargylic
alcohols to the corresponding Z-enones.
Redox isomerization is a synthetically important process
because it creates two new functional groups in the product,
among which is the isomerization of propargylic alcohols
to conjugated enones. Although E-enones have been prepared
by this approach, Z-enones could not be accessed. We
previously reported DABCO-catalyzed E-selective isomer-
ization of electron-deficient propargylic alcohols to enones
and its mechanism. Based on this mechanism, we have now
developed the first Z-selective redox isomerization of
electron-deficient propargylic alcohol to enone using sodium
bicarbonate as a catalyst.
Diversity-oriented organic synthesis has emerged as a new
paradigm to discover small molecules that perturb biological
processes. In this field, a new and exciting challenge is to
develop synthetic methods to prepare skeletally and stere-
ochemically diverse bioactive small molecules from common
substrates.1 As part of our efforts in this area, we became
interested in Z- and E-γ-oxo-R,â-alkenyl esters (B and C, eq
1) and their derivatives. These moieties are part of biologically
Prior to this work, we attempted the hydrogenation of 4
(Scheme 1); this deceptively straightforward Lindlar catalyst-
(10) Hayashi, M.; Kim, Y. P.; Hiraoka, H.; Natori, M.; Takamatsu, S.;
Kawakubo, T.; Masuma, R.; Komiyama, K.; Omura, S. J. Antibiot. 1995,
48, 1435-1439.
(11) Takamatsu, S.; Kim, Y. P.; Hayashi, M.; Hiraoka, H.; Natori, M.;
Komiyama, K.; Omura, S. J. Antibiot. 1996, 49, 95-98.
(12) Goto, S.; Chen, K.-X.; Oda, S.; Hori, H.; Terada, H. J. Am. Chem.
Soc. 1998, 120, 2457-2463.
(13) Zhang, H.; Tomoda, H.; Tabata, N.; Miura, H.; Namikoshi, M.;
Yamaguchi, Y.; Masuma, R.; Omura, S. J. Antibiot. 2001, 54, 635-641.
(14) Evidente, A.; Andolfi, A.; Vurro, M.; Zonno, M. C.; Motta, A.
Phytochemistry 2002, 60, 45-53.
(15) Berg, A.; Notni, J.; Dorfelt, H.; Grafe, U. J. Antibiot. 2002, 55,
660-662.
important natural and unnatural compounds2-16 and are also
(16) Findlay, J. A.; Li, G. Q.; Miller, J. D.; Womiloju, T. O. Can. J.
Chem. 2003, 81, 284-292.
(1) Schreiber, S. L. Science 2000, 287, 1964-1969.
(2) Nozoe, S.; Hirai, K.; Tsuda, K. Tetrahedron Lett. 1965, 6, 4675-
4677.
(17) Angell, E. C.; Fringuelli, F.; Guo, M.; Minuti, L.; Taticchi, A.;
Wenkert, E. J. Org. Chem. 1988, 53, 4325-4328.
(18) Molander, G. A.; Harris, C. R. J. Org. Chem. 1998, 63, 812-816.
(19) Kowalski, C. J.; Lal, G. S. J. Am. Chem. Soc. 1988, 110, 3693-
3695.
(20) Dal Pozzo, A.; Acquasaliente, M.; Donzelli, G.; DeMaria, P.; Nicoli,
M. C. J. Med. Chem. 1987, 30, 1674-1677.
(21) Sonye, J. P.; Koide, K. Synth. Commun. 2006, 36, 599-602.
(22) Sonye, J. P.; Koide, K. J. Org. Chem. 2006, 71, 6254-6257.
(23) Antonioletti, R.; D’Auria, M.; De Mico, A.; Piancatelli, G.; Scettri,
A. Synthesis 1984, 3, 280-281.
(24) Shahi, S. P.; Koide, K. Angew. Chem., Int. Ed. 2004, 43, 2525-
2527.
(3) Aldridge, D. C.; Armstrong, J. J.; Speake, R. N.; Turner, W. B. Chem.
Commun. 1967, 26-27.
(4) Boeckman, R. K., Jr.; Fayos, J.; Clardy, J. J. Am. Chem. Soc. 1974,
96, 5954-5956.
(5) Michel, K. H.; Demarco, P. V.; Nagarajan, J. J. Antibiot. 1977, 30,
571-575.
(6) Nukina, M.; Sassa, T.; Ikeda, M. Tetrahedron Lett. 1980, 21, 301-
302.
(7) Fex, T. Tetrahedron Lett. 1981, 22, 2703-2706.
(8) Ohmoto, T.; Koike, K. Chem. Pharm. Bull. 1984, 32, 3579-3583.
(9) Arai, K.; Rawlings, B. J.; Yoshizawa, Y.; Vederas, J. C. J. Am. Chem.
Soc. 1989, 111, 3391-3399.
(25) Midland, M. M.; Tramontano, A.; Cable, J. R. J. Org. Chem. 1980,
45, 28-29.
10.1021/jo0623944 CCC: $37.00 © 2007 American Chemical Society
Published on Web 02/02/2007
1846
J. Org. Chem. 2007, 72, 1846-1848