Organic & Biomolecular Chemistry
Communication
A similar tendency has been observed in an oligothiophene-
containing cyclophane scaffold.
(c) K. Takase, K. Noguchi and K. Nakano, J. Org. Chem.,
2018, 83, 15057.
3
5
F. Sannicolò, S. Arnaboldi, T. Benincori, V. Bonometti,
R. Cirilli, L. Dunsch, W. Kutner, G. Longhi, P. R. Mussini,
M. Panigati, M. Pierini and S. Rizzo, Angew. Chem., Int. Ed.,
Conclusions
2
014, 53, 2623.
We have prepared rigid stereogenic cyclic dimers based on
6
7
P. Wang, I. Jeon, Z. Lin, M. D. Peeks, S. Savagatrup,
S. E. Kooi, T. V. Voorhis and T. M. Swager, J. Am. Chem.
Soc., 2018, 140, 6501.
T. Otsubo and K. Takimiya, Selenophenes as Hetero-ana-
logues of Thiophene-based Materials, in Handbook of
Thiophene-based Materials: Applications in Organic
Electronics and Photonics, ed. I. F. Perepichka and
D. F. Perepichka, Wiley, Chichester, 2009, vol. 1, p. 321.
N.-H. You, N. Fukuzaki, Y. Nakamura, T. Higashihara,
S. Ando and M. Ueda, J. Polym. Sci., Part A: Polym. Chem.,
2
,2′-biselenophene linked with a [2.2]PC framework. X-ray crys-
tallography revealed that (R ,R )-1 adopted a C symmetric geo-
p
p
1
metry bearing cisoid and transoid biselenophene moieties.
Embedding 2,2′-biselenophene into a robust chiral scaffold
remarkably enhanced the chiroptical properties when com-
pared to its acyclic chiral precursor. In addition, CV revealed
stepwise redox properties, which suggest that interactions were
formed between the two intramolecular biselenophene arrays.
To the best of our knowledge, this is the first example of
chiroptical properties based on a biselenophene scaffold. Our
results provide a foundation for the synthesis of new seleno-
phene-containing materials.
8
9
2
009, 47, 4428.
(a) K. Takimiya, Y. Kunugi, Y. Konda, N. Niihara and
T. Otsubo, J. Am. Chem. Soc., 2004, 126, 5084; (b) H.-W. Lin,
W.-Y. Lee and W.-C. Chen, J. Mater. Chem., 2012, 22, 2120.
1
1
1
0 (a) K. J. Weiland, A. Gallego and M. Mayor, Eur. J. Org.
Chem., 2019, 3073; (b) Z. Hassan, E. Spuling, D. M. Knoll,
J. Lahann and S. Bräse, Chem. Soc. Rev., 2018, 47, 6947;
Conflicts of interest
There are no conflicts of interest to declare.
(
c) A. Marrocchi, I. Tomasi and L. Vaccaro, Isr. J. Chem.,
012, 52, 41.
1 (a) Y. Morisaki and Y. Chujo, Bull. Chem. Soc. Jpn., 2019,
2, 265; (b) Y. Morisaki, M. Gon, T. Sasamori, N. Tokitoh
and Y. Chujo, J. Am. Chem. Soc., 2014, 136, 3350;
c) M. Gon, Y. Morisaki and Y. Chujo, Chem. – Eur. J., 2017,
3, 6323.
2
Acknowledgements
9
This work was partially supported by the JSPS KAKENHI Grant
Number 18K05092 and Kitasato Research Centre for
Environment Science. All calculations were performed at the
Research Centre for Computational Science, Okazaki (Japan).
(
2
2 (a) L. G. Sarbu, L. G. Bahrin, P. G. Jones, L. M. Birsa and
H. Hopf, Beilstein J. Org. Chem., 2015, 11, 1917;
(b) C. Mézière, M. Allain, C. Oliveras-Gonzalez, T. Cauchy,
N. Vanthuyne, L. G. Sarbu, L. M. Birsa, F. Pop and
N. Avarvari, Chirality, 2018, 30, 568; (c) K. Kobayakawa,
M. Hasegawa, H. Sasaki, J. Endo, H. Matsuzawa, K. Sako,
J. Yoshida and Y. Mazaki, Chem. – Asian J., 2014, 9, 2751.
Notes and references
1
(a) J. R. Brandt, F. Salerno and M. J. Fuchter, Nat. Rev.
Chem., 2017, 1, 0045; (b) M. Rickhaus, M. Mayor and
M. Jurícek, Chem. Soc. Rev., 2016, 45, 1542.
13 (a) K. J. Weiland, T. Brandl, K. Atz, A. Prescimone,
D. Häussinger, T. Šolomek and M. Moyor, J. Am. Chem.
Soc., 2019, 141, 2104; (b) Y. Morisaki, R. Hifumi, L. Lin,
K. Inoshita and Y. Chujo, Polym. Chem., 2012, 3, 2727;
(c) L. Guyard, C. Dumas, F. Miomandre, R. Pansu, R. Renault-
Méallet and P. Audebert, New J. Chem., 2003, 27, 1000.
2
For selected recent examples: (a) K. Miki, T. Noda, M. Gon,
K. Tanaka, Y. Chujo, Y. Mizuhata, N. Tokitoh and K. Ohe,
Chem. – Eur. J., 2019, 25, 9211; (b) Y. Nojima, M. Hasegawa,
N. Hara, Y. Imai and Y. Mazaki, Chem. Commun., 2019, 55,
2
749; (c) X. Shang, I. Song, H. Ohtsu, Y. H. Lee, T. Zhao,
T. Kojima, J. H. Jung, M. Kawano and J. H. Oh, Adv. Mater., 14 S. Ishioka, M. Hasegawa, N. Hara, Y. Imai and Y. Mazaki,
017, 29, 1605828; (d) Y. Nakakuki, T. Hirose, H. Sotome, Chem. Lett., 2019, 47, 640.
H. Miyasaka and K. Matsuda, J. Am. Chem. Soc., 2018, 140, 15 X. Liu, Y. Ma, W. Duan, F. He, L. Zhao and C. Song, J. Org.
2
4
317; (e) M. Hasegawa, D. Kurebayashi, H. Matsuzawa and
Chem., 2011, 76, 1953.
Y. Mazaki, Chem. Lett., 2018, 47, 989.
M. Hasegawa, K. Kobayakawa, H. Matsuzawa, T. Nishinaga,
16 Y. Yang, R. C. da Costa, M. J. Fuchter and A. J. Campbell,
Nat. Photonics, 2013, 7, 634.
3
4
T. Hirose, K. Sako and Y. Mazaki, Chem. – Eur. J., 2017, 23, 326. 17 R. C. da Costa, G. J. Hedley, D.-M. Smilgies, J. M. Frost,
(a) F. Sannicolò, P. R. Mussini, T. Benincori, R. Cirilli,
S. Abbate, S. Arnaboldi, S. Casolo, E. Castiglioni,
G. Longhi, R. Martinazzo, M. Panigati, M. Pappini,
I. D. W. Samuel, A. Otero-de-Roza, E. R. Johnson,
K. E. Helfs, J. Nelson, A. J. Campbell and M. J. Fuchter, ACS
Nano, 2017, 11, 8329.
E. Q. Procopio and S. Rizzo, Chem. – Eur. J., 2014, 20, 18 X. Shang, I. Song, H. Ohtsu, Y. H. Lee, T. Zhao, T. Kojima,
1
5298; (b) T. Ikai, K. Takayama, Y. Wada, S. Minami,
J. H. Jung, M. Kawano and J. H. Oh, Adv. Mater., 2017, 29,
C. Apiboon and K.-i. Shinohara, Chem. Sci., 2019, 10, 4890;
1605828.
This journal is © The Royal Society of Chemistry 2019
Org. Biomol. Chem., 2019, 17, 8822–8826 | 8825