Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 5
COMMUNICATION
Journal Name
4
00
00
00
00
400
300
Blue: 36.18 300
Blue:54.08
Red:32.67 200
Blue: 62.59
Red: 54.98
within 25 minutes, showing selectivity and not interfered by
other biological components, depending on the color of
3
DOI: 10.1039/C9CC01959F
Red: 21.76
B
2
200
100
100
700
600
1
0
0
0
20 40 60 80 100 0
0
20 40 60 80 100
0
30 60 90 120 150
Intensity
“lighting up”, bedside testing can be realized. On the basis of
Intensity
Intensity
FL @ 460 nm
500
the advantages above, this system can be popularized and
applied in sensing of lipase and α-amylase during clinical
diagnosis.
A
400
300
200
4
00
00
00
00
400
200
150
100
50
Blue: 81.37
Red: 76.05
Blue: 82.98
Red: 103.47
Blue: 150.83
Red: 112.97
FL @ 610 nm
3
300
FL @ 460 nm
2
200
We are grateful to the National Science Foundation of China
100
1
100
FL @ 610 nm
(no. 31872896, 21535004, 91753111 and 21390411), the
0
0
0
0
20
40 60 80 100 120
60 80 100 120 140
Intensity
0
100 200 300
Intensity
Normal Pople
Patients
Young Elite Scientists Sponsorship Program by CAST
Intensity
Fig. 4 A) Picture of probe S4 after incubation with 10-fold diluted real human serum (2017QNRC001) for financial support.
samples under UV light illumination at 365 nm. Upper row: normal people; lower row:
patients. The histograms show the intensity distributions of pixels in the red and blue
channels. The numbers in the figures represent the average intensity per pixel in the
blue and red color channel. B) Box plot representation of fluorescence intensity at 460
nm and 610 nm of detection system in response to lipase and α-amylase from diluted
serum specimens of normal people and acute pancreatitis patients.
Notes and references
1
F. K. Winkler, A. Darcy and W. Hunziker, Nature, 1990, 343,
7
71-774; (A. Schmid, J. S. Dordick, B. Hauer, A. Kiener, M.
Wubbolts and B. Witholt, Nature, 2001, 409, 258-268.
Finally, the probe was applied to simultaneously sensing
lipase and α-amylase in human serum at the point of care. We
use 10-fold diluted serum specimens from 9 acute pancreatitis
patients and 9 normal people. After the incubation, we took
a picture of the mixtures in 96-well plate with a digital camera,
selected the designated area, and quantified the signal using a
software script, determines the average intensity per pixel
2
3
M. Roxas, Altern. Med. Rev., 2008, 13, 307-314; P. G.
Lankisch, M. Apte and P. A. Banks, Lancet, 2015, 386, 85-96.
M. D. Johnson, Gut, 2005, 54, 1-9; J. L. Frossard, M. L. Steer
and C. M. Pastor, Lancet, 2008, 371, 143-152; P. A. Banks and
M. L. Freeman, Am. J. of Gastroenterol., 2006, 101, 2379-
2
400.
4
E. J. Balthazar, Radiology, 2002, 223, 603-613; M. Avanesov,
J. M. Weinrich, T. Kraus, T. Derlin, G. Adam, J. Yamamura and
M. Karul, Eur. J. Radiol., 2016, 85, 2014-2022; M. Avanesov,
A. Loeser, S. Keller, J. M. Weinrich, A. Laqmani, G. Adam, M.
Karul and J. Yamamura, Eur. J. Radiol., 2017, 95, 278-285.
D. Yadav, B. Ng, M. Saul and E. D. Kennard, Pancreas, 2011,
1
3
(
AIP) in the blue and red color channels. Fig. 4A and inset
photograph indicted that the patients’ AIP values of blue and
red color channels were significant higher than the normal
ones. Therefore, the AIP of normal people can be used to build
the threshold values for the point of care testing and diagnosis
of acute pancreatitis. Subsequently, the using of calibration
curve (Fig. 1B, D), as a standard, to the simultaneous
quantitative analysis of lipase and α-amylase levels in human
serum, the results in Fig. 4B and Table S1 indicate that the
lipase and α-amylase levels of normal people was in the range
5
6
4
0, 383-389; N. W. Tietz, Clin. Chim. Acta, 1997, 257, 85-98.
W. Zhang, Y. Tang, J. Liu, Y. Ma, L. Jiang, W. Huang, F. Huo
and D. Tian, J. Mater. Chem. B, 2014, 2, 8490-8495; J. Zhang,
J. Cui, Y. Liu, Y. Chen and G. Li, Analyst, 2014, 139, 3429-3433;
J. Shi, Q. Deng, C. Wan, M. Zheng, F. Huang and B. Tang,
Chem. Sci., 2017, 8, 6188-6195; J. Shi, Q. Deng, Y. Li, M.
Zheng, Z. Chai, C. Wan, Z. Zheng, L. Li, F. Huang and B. Tang,
Anal. Chem., 2018, 90, 13775-13782.
7
8
−1
of 88.49-168.57 and 37.23-141.25 U L , which were within the
normal range of enzymes. For patients, their lipase and α-
amylase levels were significantly higher, being in the range of
K. Satoh, T. Shimosegawa, A. Masamune, M. Hirota, K.
Kikuta, Y. Kihara, S. Kuriyama, I. Tsuji, A. Satoh, S. Hamada
and P. Res Comm Intractable Dis, Pancreas, 2011, 40, 503-
5
4
07; B. Frank, K. Gottlieb, Am. J. of Gastroenterol. 1999, 94,
63-469.
−1
4
4
60.13-702.16 and 420.01-729.75 U L . The photograph in Fig.
A, on one hand, it is clear that very weak fluorescence is
9
1
1
J. P. Corsetti, C. Cox, T. J. Schulz and D. A. Arvan, Clin. Chem.,
1993, 39, 2495-2499; T. Cartier, P. Sogni, F. Perruche, O.
Meyniard, Y. E. Claessens, J. F. Dhainaut and G. Der Sahakian,
Emerg. Med. J., 2006, 23, 701-702.
observed from normal ones’ samples and that for patients’
samples, significant double fluorescence emission “light-up”
can be noticed, demonstrating the possibility of rapid eyeball
diagnosis. On the other hand, if there are very few cases in
which lipase or α-amylase is elevated independently, our
probe system will exhibit monochromatic emission, affording
the early warning of pancreatic injury either. In addition, the
determined results were confirmed with those obtained by the
complex commercial lipase assay kit and α-amylase assay kit
methods (Table S2).
In summary, we have successfully designed and fabricated a
dual-reactive AIE probe that can respond to both lipase and α-
amylase with two differentiable fluorescent signals under the
same excitation wavelength. The combination with the
enzymatic hydrolysis function and decomposition of host-
guest inclusion triggered the AIE affect, and there is a 150 nm
way between two emission peaks, making the signal
distinguished quite easily by the naked eye. Importantly, this
simple test system can simultaneously perform quantitative
0 R. Schmid and R. Verger, Angew. Chem. Int. Ed., 1998, 37,
1
609-1633; M. Mathesh, B. Luan, T. O. Akanbi, J. Weber, J.
Liu, C. Barrow, R. Zhou and W. Yang, ACS Catal., 2016, 6,
4760-4768.
1 J. Lin, X. Zeng, Y. Xiao, L. Tang, J. Nong, Y. Liu, H. Zhou, B.
Ding, F. Xu, H. Tong, Z. Deng and X. Hong, Chem. Sci., 2019,
1
0, 1219-1226; J. Shi, Y. Li, Q. Li and Z. Li, ACS Appl. Mater.
Interfaces, 2018, 10, 12278-12294; W. Qin, P. Zhang, H. Li, J.
W. Y. Lam, Y. Cai, R. T. K. Kwok, J. Qian, W. Zheng and B. Z.
Tang, Chem. Sci., 2018, 9, 2705-2710; Y. Yuan, C. Zhang, R. T.
K. Kwok, D. Mao, B. Z. Tang and B. Liu, Chem. Sci., 2017, 8,
2
723-2728.
1
1
2 S. Song, H. Zheng, D. Li, J. Wang, H. Feng, Z. Zhu, Y. Chen
and Y. Zheng, Org. Lett., 2014, 16, 2170-2173; G. D. Liang, J.
W. Y. Lam, W. Qin, J. Li, N. Xie and B. Z. Tang, Chem.
Commun., 2014, 50, 1725-1727.
3 R. Griss, A. Schena, L. Reymond, L. Patiny, D. Werner, C.
Tinberg, D. Daker and K. Johnsson, Nat. Chem. Biol. 2014, 10,
5
98-603
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins