Mendeleev Commun., 2015, 25, 19–20
Sodium acetate is an advantageous catalyst for a number of
condensation of dimedone anion A with salicylaldehyde 2 occurs
with elimination of hydroxide anion and formation of the adduct
3. The subsequent Michael addition of dimedone to electron
deficient adduct 3 with further cyclization results in ultimate
tetrahydro-1H-xanthen-1-one 1 and ethoxide anion.
1
8–21
organic reactions.
Therefore, we used it in our initial experi-
2
3
ments (Table 1, entries 1–3) in ethanol or water at 78–80°C and
obtained tetrahydro-1H-xanthen-1-one 1a in 86–93% yields within
yet 5 min. Surprisingly, in ethanol at 78°C in the absence of
sodium acetate the yield of product 1a was as high as 90% in
–5 min (entries 4, 6). Under solvent-free conditions (80°C,
min) compound 1a was formed in 71% yield (entry 9). Methanol
and n-propanol were less effective solvents (entries 10, 11).
Under the optimum conditions (boiling ethanol, 3 min), the
variety of tetrahydro-1H-xanthen-1-ones 1a–g was prepared in
excellent yields (Table 2).
In conclusion, the herein developed facile and efficient pro-
cedure provides very fast (neutral conditions, 3 min) and selective
multicomponent assembling of salicylaldehydes and dimedone
into tetrahydro-1H-xanthen-1-ones 1 (85–95% yields), which are
3
5
4
the orally active and selectiveY5 antagonists and seem promising
for other biomedical applications. The procedure is valuable
from the viewpoint of environmentally benign diversity-oriented
large-scale processes.
Table 2 Tandem transformation of salicylaldehydes 2a–g and dimedone
a
into tetrahydro-1H-xanthen-1-ones 1a–g.
This work was supported by the Russian Foundation for Basic
Research (project nos. 14-03-31918 and 13-03-00096a).
Entry
Salicylaldehyde
Product
Isolated yield (%)
1
2
3
4
5
6
7
2a
2b
2c
2d
2e
2f
1a
1b
1c
1d
1e
1f
90
91
93
89
95
88
85
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.mencom.2015.01.006.
References
1
2
C. Wahlestedt and D. J. A. Reis, Rev. Pharmacol. Toxicol., 1993, 32, 309.
A. G. Blomqvist and H. Herzog, Trends. Neurosci., 1997, 20, 294.
2g
1g
a
3 C. Gerald, M. W. Walker, L. Criscione, T. L. Gustafson, C. Batzl-
Hartmann, K. E. Smith, P. Vaysse, M. M. Durkin, T M. Laz, D. L.
Linemeyer,A. O. Schaffhauser, S. Whitebread, K. G. Hofbauer, R. I. Taber,
T. A. Branchek and R. L. Weinshank, Nature, 1996, 382, 168.
Salicylaldehyde 2a–g (5 mmol), dimedone (10 mmol), EtOH (2 ml), 3 min
boiling.
As practically pure compounds 1a–g were formed ultimately,
the resulting precipitate was filtered off, rinsed with an ice-cold
ethanol–water solution (1:1, 2 ml) and dried under reduced pres-
sure, which provided a simple isolation operation.
Taking into consideration the above results, the data on non-
catalytic multicomponent transformation of isatin, cyclic C–H
acids and malononitrile into substituted spirooxoindoles and
the data on non-catalytic ‘on water’ Knoevenagel condensation
of isatins with malononitrile22 the following mechanism for the
non-catalytic chain transformation of salicylaldehydes 2a–g and
dimedone into tetrahydro-1H-xanthen-1-ones 1a–g was suggested
4
A. Kanatani, A. Ishihara, H. Iwaasa, K. Nakamura, O. Okamoto, M. Hidaka,
J. Ito, T. Fukuroda, D. J. MacNeil, L. H. T.Van der Ploeg,Y. Ishii, T. Okabe,
T. Fukami and M. Ihara, Biochem. Biophys. Res. Commun., 2000, 272, 169.
5 S. Mashiko, A. Ishihara, H. Iwaasa, H. Sano, Z. Oda, J. Ito, M. Yumoto,
M. Okawa, J Suzuki, T. Fukuroda, M. Jitsuoka, N. R. Morin, D. J.
MacNeil, L. H. T. Van der Ploeg, M. Ihara, T. Fukami and A. Kanatani,
Endocrinology, 2003, 144, 1793.
1
7
6
A. Ishihara, A. Kanatani, S. Mashiko, T. Tanaka, M. Hidaka, A. Gomori,
H. Iwaasa, N Murai, S. Egashira, T. Murai, Y. Mitobe, H. Matsushita,
O. Okamoto, N Sato, M. Jitsuoka, T. Fukuroda, T. Ohe, X. Guan, D. J.
MacNeil, L. H. T. Van der Ploeg, M. Nishikibe, Y. Ishii, M. Ihara and
T. A. Fukami, Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 7154.
7
8
9
O. Thoison, E. Hnawia, F. Gueritte and T. Sevenet, Phytochemistry,
(
Scheme 2). As the initiation step, the thermal deprotonation
1
992, 31, 1439.
H. K.Wang, S. L. Morris-Natschke and K. H. Lee, Med. Res. Rev., 1997,
7, 367.
of dimedone leads to dimedone anion A. Then Knoevenagel
1
O
O
O
G. Sabitha, K. Arundhathi, K. Sudhakar, B. S. Sastry and J. S. Yadav,
Me
Me
heating
EtOH
Me
Me
2
Synth. Commun., 2008, 38, 3439.
10 Y.-L. Li, H. Chen, Z.-S. Zeng, X.-S. Wang, D.-Q. Shi and S.-J. Tu,
Chin. J. Org. Chem., 2005, 25, 846.
O
1
1
1 L. Nagarapu, S. Karnakani, R. Bantu and B. Sridhar, Synth. Commun.,
A
2
012, 42, 967.
2 X.-S. Wang, D.-Q. Shi, Y.-L. Li, H. Chen, X.-Y. Wie and Z.-M. Zong,
Synth. Commun., 2005, 35, 97.
Me Me
Me Me
1
1
3 M. Kidwai and A. Jain, Appl. Organomet. Chem., 2012, 26, 528.
4 P. Zang, Y.-D. Yu and Z.-H. Zang, Synth. Commun., 2008, 38, 4474.
O
OH
O
O
15 R. A. Sheldon, J. Mol. Catal. A, 1996, 107, 75.
16 D. M. Pore, T. S. Shaikh, K. A. Undale and D. S. Gaikwad, C. R. Chimie,
2010, 13, 1429.
– HO–
R1
R1
O
1
7 M. N. Elinson, A. I. Ilovaisky, V. M. Merkulova, T. A. Zaimovskaya and
G. I. Nikishin, Mendeleev Commun., 2012, 22, 143.
OH
OH
R2
O
R2
18 T. Rosen, Comp. Org. Syn., 1991, 2, 395.
3
19 M. N. Elinson, S. K. Feducovich, T. A. Zaimovskaya, A. N. Vereshchagin
and G. I. Nikishin, Russ. Chem. Bull., Int. Ed., 2005, 54, 673 (Izv. Akad.
Nauk, Ser. Khim., 2005, 663).
Me Me
Me
Me
2
0 M. N. Elinson, A. N. Vereshchagin, S. K. Feducovich, T. A. Zaimovskaya,
Z. A. Starikova, P. A. Belyakov and G. I. Nikishin, Tetrahedron Lett.,
, –
OH
O
O
2
007, 48, 6614.
O
O
1
21 W.-B. Liu, H.-F. Jiang, S.-F. Zhu and W. Wang, Tetrahedron, 2009, 65,
7985.
22 D. V. Demchuk, M. N. Elinson and G. I. Nikishin, Mendeleev Commun.,
R1
–
H2O
EtOH
–
–
EtO
HO
OH
Me
2
011, 21, 224.
Me
R2
23 S. Patai and Y. Israeli, J. Chem. Soc., 1960, 2025.
Scheme 2
Received: 2nd April 2014; Com. 14/4342
–
20 –