Inorganic Chemistry
Article
Akello, M. J.; Pilcher, G. Thermochemical and Crystallographic
Studies of some p-Ketoimine Derivatives. J. Chem. Soc., Perkin Trans. 2
1993, 1765−1769.
(14) (a) Gavezzotti, A. Are Crystal Structures Predictable? Acc.
Chem. Res. 1994, 27, 309−314. (b) Gavezzotti, A.; Filippini, G. J.
Geometry of the intermolecular X-H···Y (X, Y = N, O) hydrogen
bond and the calibration of empirical hydrogen-bond potentials. J.
Phys. Chem. 1994, 98, 4831−4837.
(15) Chepelin, O.; Ujma, J.; Wu, X.; Slawin, A. M. Z.; Pitak, M. B.;
Coles, S. J.; Michel, J.; Jones, A. C.; Barran, P. E.; Lusby, P. J.
Luminescent, Enantiopure, Phenylatopyridine Iridium-Based Coordi-
nation Capsules. J. Am. Chem. Soc. 2012, 134, 19334−19337.
106, 6647−6653. (b) Nonoyama, M. Benzo[h]quinolin-10-yl-N
Iridium(III) Complexes. Bull. Chem. Soc. Jpn. 1974, 47, 767−768.
(29) CrysAlisPro (Version 1.171.38.41), Rigaku OD, 2015.
(30) Sheldrick, G. M. SHELXT − Integrated space-group and
crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv.
2015, A71, 3−8.
(31) Sheldrick, G. M. Crystal structure refinement with SHELXL.
Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3−8.
(32) Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G.
C. Electrochemical Considerations for Determining Absolute Frontier
Orbital Energy Levels of Conjugated Polymers for Solar Cell
Applications. Adv. Mater. 2011, 23, 2367−2371.
(33) Becke, A. D. Density-functional thermochemistry. III. The role
of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.
(34) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J.
Ab Initio Calculation of Vibrational Absorption and Circular
Dichroism Spectra Using Density Functional Force Fields. J. Phys.
Chem. 1994, 98, 11623−11627.
(35) Kim, K.; Jordan, K. D. Comparison of Density Functional and
MP2 Calculations on the Water Monomer and Dimer. J. Phys. Chem.
1994, 98, 10089−10094.
(36) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V.
R. Efficient diffuse function-augmented basis sets for anion
calculations. III.* The 3-21+G basis set for first-row elements, Li−
F. J. Comput. Chem. 1983, 4, 294−301.
(37) Dunning, T. H.; Hay, P. J. Gaussian Basis Sets for Molecular
Calculations. In Applications of Electronic Structure Theory; Schaefer
III, H. F., Eds.; Plenum: New York, 1976; pp 1−28.
(38) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.;
Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self-consistent molecular
orbital methods. XXIII. A polarization-type basis set for second-row
elements. J. Chem. Phys. 1982, 77, 3654−3665.
(39) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals
for main group thermochemistry, thermochemical kinetics, non-
covalent interactions, excited states, and transition elements: two new
functionals and systematic testing of four M06-class functionals and
12 other functionals. Theor. Chem. Acc. 2008, 120, 215−241.
(40) Chai, J.−D.; Head-Gordon, M. Long-range corrected hybrid
density functionals with damped atom−atom dispersion corrections. J.
Chem. Phys. 2008, 128, 084106.
̀
́
̈
(16) (a) Rafols-Ribe, J.; Will, P.-A.; Hanisch, C.; Gonzalez-Silveira,
M.; Lenk, S.; Rodríguez-Viejo, J.; Reineke, S. High-performance
organic light-emitting diodes comprising ultrastable glass layers. Sci.
Adv. 2018, 4 (5), 1−9. (b) Kwak, K.; Cho, K.; Kim, S. Analysis of
thermal degradation of organic light-emitting diodes with infrared
imaging and impedance spectroscopy. Opt. Express 2013, 21, 29558−
29559.
(17) Chen, Z.-Q.; Shen, X.; Xu, J.-X.; Zou, H.; Wang, X.; Xu, Y.;
Zhu, D.-R. Iridium(III) complexes based on 5-nitro-2-(2′,4′-
difluorophenyl)pyridyl: Syntheses, structures and photoluminescence
properties. Inorg. Chem. Commun. 2015, 61, 152−156.
(18) Hirva, P.; Haukka, M.; Jakonen, M.; Moreno, M. A. DFT tests
for group 8 transition metal carbonyl complexes. J. Mol. Model. 2008,
14, 171−181.
(19) Skorka, L.; Filapek, M.; Zur, L.; Malecki, J. G.; Pisarski, W.;
Olejnik, M.; Danikiewicz, W.; Krompiec, S. Highly Phosphorescent
Cyclometalated Iridium(III) Complexes for Optoelectronic Applica-
tions: Fine Tuning of the Emission Wavelength through Ancillary
Ligands. J. Phys. Chem. C 2016, 120, 7284−7294.
(20) Kodate, S.; Suzuka, I. Assignments of Lowest Triplet State in Ir
Complexes by Observation of Phosphorescence Excitation Spectra at
6 K. Jpn. J. Appl. Phys. 2006, 45, 574−578.
(21) (a) Li, J.; Djurovich, P. I.; Alleyne, B. D.; Yousufuddin, M.; Ho,
N. N.; Thomas, J. C.; Peters, J. C.; Bau, R.; Thompson, M. E.
Synthetic Control of Excited-State Properties in Cyclometalated
Ir(III) Complexes Using Ancillary Ligands. Inorg. Chem. 2005, 44,
1713−1727. (b) Yersin, H.; Rausch, A. F.; Czerwieniec, R.; Hofbeck,
T.; Fischer, T. The triplet state of organo-transition metal
compounds. Triplet harvesting and singlet harvesting for efficient
OLEDs. Coord. Chem. Rev. 2011, 255, 2622−2652.
(22) Hsu, C.-C; Lin, C.-C.; Chou, P.-T.; Lai, C.-H.; Hsu, C.-W.; Lin,
C.-H.; Chi, Y. Harvesting Highly Electronically Excited Energy to
Triplet Manifolds: State-Dependent Intersystem Crossing Rate in
Os(II) and Ag(I) Complexes. J. Am. Chem. Soc. 2012, 134, 7715−
7724.
̀
(41) Cances, E.; Mennucci, B.; Tomasi, J. A new integral equation
formalism for the polarizable continuum model: Theoretical back-
ground and applications to isotropic and anisotropic dielectrics. J.
Chem. Phys. 1997, 107, 3032−3041.
(42) Mennucci, B.; Tomasi, J. Continuum solvation models: A new
approach to the problem of solute’s charge distribution and cavity
boundaries. J. Chem. Phys. 1997, 106, 5151−5158.
(43) Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Ab initio study
of ionic solutions by a polarizable continuum dielectric model. Chem.
Phys. Lett. 1998, 286, 253−260.
(23) You, Y.; Nam, W. Photofunctional triplet excited states of
cyclometalated Ir(III) complexes: beyond electroluminescence. Chem.
Soc. Rev. 2012, 41, 7061−7084.
(44) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson,
G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.;
Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J.
V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.;
Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson,
T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.;
Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.;
Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov,
V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.;
Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.
Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford CT, 2016.
(24) Kawamura, Y.; Goushi, K.; Brooks, J.; Brown, J. J.; Sasabe, H.;
Adachi, C. 100% phosphorescence quantum efficiency of Ir(III)
complexes in organic semiconductor films. Appl. Phys. Lett. 2005, 86,
071104−3.
(25) Wu, L−L.; Tsai, S−H.; Guo, T−F.; Yang, Ch−H.; Sun, I−W.
Synthesis and green electrophosphorescence of a novel cyclo-
metalated iridium complex in polymer light-emitting diodes. J.
Lumin. 2007, 126, 687−694.
(26) Tang, H.; Li, Y.; Wei, C.; Chen, B.; Yang, W.; Wu, H.; Cao, Y.
Novel yellow phosphorescent iridium complexes containing a
carbazole−oxadiazole unit used in polymeric light-emitting diodes.
Dyes Pigm. 2011, 91, 413−421.
(27) Glowacki, I.; Szamel, Z. The impact of 1 wt% of Ir(ppy)3 on
trapping sites and radiative recombination centres in PVK and PVK/
PBD blend seen by thermoluminescence. Org. Electron. 2015, 24,
288−296.
(28) (a) Sprouse, S.; King, K. A.; Spellane, P. J.; Watts, R. J.
Photophysical effects of metal-carbon σ bonds in ortho-metalated
complexes of iridium(III) and rhodium(III). J. Am. Chem. Soc. 1984,
P
Inorg. Chem. XXXX, XXX, XXX−XXX