substituted quinoline was carried out on a gram scale at a
catalyst loading of 0.1 mol%, giving the tetrahydroquinoline
derivative in quantitative conversion with 94% ee. Subsequent
N-methylation of the hydrogenated product afforded the desired
natural product in 96% overall yield (Scheme 2).
4 To our knowledge, only two examples of asymmetric hydrogenation
under solvent-free or highly concentrated conditions have been
reported, see: (a) S. E. Clapham, R. Guo, M. Zimmer-De Iuliis,
N. Rasool, A. Lough and R. H. Morris, Organometallics, 2006, 25,
5477; (b) X. Wan, Y. Sun, Y. Luo, D. Li and Z. Zhang, J. Org. Chem.,
2005, 70, 1070.
5 For selected reviews, see: (a) H. Blaser, C. Malan, B. Pugin, F.
Spindler, H. Steiner and M. Studer, Adv. Synth. Catal., 2003, 345,
103; (b) W. Tang and X. Zhang, Chem. Rev., 2003, 103, 3029;
(c) R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley,
New York, 1994; (d) G. Q. Lin, Y. M. Li, A. S. C. Chan, Principles
and Applications of Asymmetric Synthesis, Wiley-Interscience, New
York, 2001.
6 For recent reviews, see: (a) F. Glorius, Org. Biomol. Chem., 2005, 3,
4171; (b) Y. G. Zhou, Acc. Chem. Res., 2007, 40, 1357; (c) For selected
examples, see: C. Legault and A. Charette, J. Am. Chem. Soc., 2005,
127, 8966; (d) R. Kuwano and M. Kashiwabara, Org. Lett., 2006, 8,
2653; (e) S. M. Lu, Y. Q. Wang, X. W. Han and Y. G. Zhou, Angew.
Chem., Int. Ed., 2006, 45, 2260; (f) S. Kaiser, S. P. Smidt and A.
Pfaltz, Angew. Chem. Int. Ed, 2006, 45, 5194; (g) R. Kuwano, M.
Kashiwabara, M. Ohsumi and H. Kusano, J. Am. Chem. Soc., 2008,
130, 808.
Scheme 2 Synthesis of naturally occurring tetrahydroquinoline alka-
loid, (-)-angustureine.
7 For selected recent examples, see: (a) W. B. Wang, S. M. Lu, P. Y.
Yang, X. W. Han and Y. G. Zhou, J. Am. Chem. Soc., 2003, 125,
10536; (b) L. Xu, K. Lam, J. Ji, J. Wu, Q. H. Fan, W. H. Lo and
A. S. C. Chan, Chem. Commun., 2005, 1390; (c) Z. J. Wang, G. J.
Deng, Y. Li, Y. M. He, W. J. Tang and Q. H. Fan, Org. Lett., 2007,
9, 1243; (d) W. J. Tang, S. F. Zhu, L. J. Xu, Q. L. Zhou, Q. H. Fan,
H. F. Zhou, K. Lam and A. S. C. Chan, Chem. Commun., 2007, 613;
(e) S. Lu, X. Han and Y. Zhou, Adv. Synth. Catal., 2004, 346, 909;
(f) S. M. Lu and C. Bolm, Adv. Synth. Catal., 2008, 350, 1101.
8 F. Fache, E. Schulz, M. L. Tommasino and M. Lemaire, Chem. Rev.,
2000, 100, 2159.
In conclusion, the first highly enantioselective hydrogenation
of quinolines catalyzed by phosphine-free chiral cationic Ru-
TsDPEN catalyst has been achieved under more environmen-
tally friendly solvent-free or highly concentrated conditions at
low catalyst loading (low to 0.02 mol%). This new method
provides a practical synthetic approach to optically active
tetrahydroquinoline derivatives.
9 (a) R. Noyori and S. Hashiguchi, Acc. Chem. Res., 1997, 30, 97;
(b) S. Gladiali and E. Alberico, Chem. Soc. Rev., 2006, 35, 226; (c) S.
Hashiguchi, A. Fujii, J. Takehara, T. Ikariya and R. Noyori, J. Am.
Chem. Soc., 1995, 117, 7562; (d) N. Uematsu, A. Fujii, S. Hashiguchi,
T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1996, 118, 4916.
10 (a) M. Ito, M. Hirakawa, K. Murata and T. Ikariya, Organometallics,
2001, 20, 379; (b) H. Guan, M. Iimura, M. P. Magee, J. R. Norton
and G. Zhu, J. Am. Chem. Soc., 2005, 127, 7805; (c) C. Hedberg, K.
Ka¨llstro¨m, P. I. Arvidsson, P. Brandt and P. G. Andersson, J. Am.
Chem. Soc., 2005, 127, 15083; (d) H. Huang, T. Okuno, K. Tsuda, M.
Yoshimura and M. Kitamura, J. Am. Chem. Soc., 2006, 128, 8716;
(e) C. Li and J. Xiao, J. Am. Chem. Soc., 2008, 130, 13208; (f) C. Li,
C. Wang, B. Villa-Marcos and J. Xiao, J. Am. Chem. Soc., 2008, 130,
14450; (g) Z. W. Li, T. L. Wang, Y. M. He, Z. J. Wang, Q. H. Fan, J.
Pan and L. J. Xu, Org. Lett, 2008, 10, 5265.
11 (a) T. Ohkuma, N. Utsumi, K. Tsutsumi, K. Murata, C. Sandoval and
R. Noyori, J. Am. Chem. Soc., 2006, 128, 8724; (b) C. A. Sandoval,
T. Ohkuma, N. Utsumi, K. Tsutsumi, K. Murata and R. Noyori,
Chem. Asian. J., 2006, 102; (c) T. Ohkuma, K. Tsutsumi, N. Utsumi,
N. Arai, R. Noyori and K. Murata, Org. Lett., 2007, 9, 255; (d) T.
Ohkuma, N. Utsumi, M. Watanabe, K. Tsutsumi, N. Arai and K.
Murata, Org. Lett., 2007, 9, 2565.
Acknowledgements
Financial support from the National Natural Science Founda-
tion of China (20532010) and Chinese Academy of Sciences
(project no. KJCX2.YW.H16) is greatly acknowledged.
Notes and references
1 (a) P. T. Anastas and M. M. Kirchhoff, Acc. Chem. Res., 2002, 35,
686; (b) P. T. Anastas and J. B. Zimmerman, Environ. Sci. Technol.,
2003, 37, 94A; (c) J. M. DeSimone, Science, 2002, 297, 799.
2 (a) Selected reviews on solvent-free reactions see: K. Tanaka, Solvent-
Free Organic Synthesis, Wiley-VCH, Weinheim, Germany, 2003;
(b) G. W. V. Cave, C. L. Raston and J. L. Scott, Chem. Commun.,
2001, 2159; (c) P. J. Walsh, H. Li and C. A. de Parrodi, Chem. Rev.,
2007, 107, 2503.
3 For selected examples of highly enantioselective solvent-free or
highly concentrated reactions, see: (a) M. Tokunaga, J. F. Larrow,
F. Kakiuchi and E. N. Jacobsen, Science, 1997, 277, 936; (b) J. Long,
J. Y. Hu, X. Q. Shen, B. M. Ji and K. Ding, J. Am. Chem. Soc., 2002,
124, 10; (c) Y. Yuan, X. Zhang and K. Ding, Angew. Chem., Int. Ed.,
2003, 42, 5478; (d) S. J. Jeon, H. Li and P. J. Walsh, J. Am. Chem.
Soc., 2005, 127, 16416; (e) J. Zhao, L. Liu, Y. Sui, Y. Liu, D. Wang
and Y. Chen, Org. Lett., 2006, 8, 6127; (f) A. J. Wooten, J. G. Kim
and P. J. Walsh, Org. Lett., 2007, 9, 381.
12 H. F. Zhou, Z. W. Li, Z. J. Wang, T. L. Wang, L. J. Xu, Y. M. He,
Q. H. Fan, J. Pan, L. Q. Gu and A. S. C. Chan, Angew. Chem., Int.
Ed., 2008, 47, 8464.
13 I. Jacquemond-Collet, S. Hannedouche, N. Fabre, I. Fouraste and C.
Moulis, Phytochemistry, 1999, 51, 1167.
This journal is
The Royal Society of Chemistry 2009
Green Chem., 2009, 11, 767–769 | 769
©