C O M M U N I C A T I O N S
the plane of the C3-symmetric facial ligand. Each PdII has a square
planar geometry with Pd‚‚‚NPyr distance of 2.033(4) Å, and NPyr
host systems that can accommodate suitable small molecular guests
or chiral catalysts.
-
Pd-NPyr angles of 89.992(3) and 178.7(2)°. Two conformational
isomers in a ratio of approximately 3:2 were observed as statically
disordered structures. Depending on the conformation of the
ligands,16 two different truncated octahedral cages of around 2.4
nm in diameters were formed (Figure 1a and 1b). The major form
of 1 with a syn-conformational ligand has a cavity volume of ∼1600
Å3 (Figure 1a). The cage has 12 ports (3.4 × 3.5 Å2) at all edges
of the octahedron. The minor form of cage 1 with anti-conforma-
tional ligands has a slightly increased cavity volume (∼1900 Å3)
and port size (3.3 × 8.0 Å2) (Figure 1b). However, the ROESY
spectrum of cage 1 indicates that the major form with the ligand in
the syn-conformation is the only species in solution (Figure S3).
We could apply the same strategy for the preparation of another
O-symmetry truncated octahedral cage with similar a C3-symmetric
facial ligand, L2 (L2 ) N,N′,N′′-tris(4-pyridinylmethyl)-1,3,5-
benzenetricarboxamide), with an additional methylene group be-
tween the amide and the pyridyl group (Scheme 1). The change in
position of the pyridyl nitrogen from the meta to the para also
provides the similar 120° kink needed for cage formation. The cage
[Pd6L28](NO3)12, 2, was prepared with eight C3-symmetric tridentate
ligands with three donor atoms at the para position of the pyridyl
group (Scheme 2). When 4 equiv of ligand L2 was treated with 3
equiv of Pd(NO3)2 in DMSO-d6 (0.5 mL) for 30 min, the
quantitative self-assembly of a single product of high symmetry
Acknowledgment. The financial support of KRF (KRF-2005-
070-C00068), ITEP (M1-0213-03-0004), KOSEF (R01-2005-000-
10490-0), and CBMH is acknowledged. The authors also acknowl-
edge PAL for beam line use (2005-2063-01).
Supporting Information Available: Experimental procedures,
spectra, and an X-ray crystallographic file in CIF format for the structure
determination. This material is available free of charge via Internet at
References
(1) (a) Johnson, J. E.; Speir, J. A. J. Mol. Biol. 1997, 269, 665-675. (b) Lin,
T.; Chen, Z.; Usha, E.; Stauffacher, C. V.; Dai, J.-B.; Schmidt, T.; Johnson,
J. E. Virology 1999, 265, 20-34.
(2) (a) Lawson, D. M.; Artymiuk, P. J.; Yewdall, S. J.; Smith, J. M. A.;
Livingstone, J. C.; Treffry, A.; Luzzago, A.; Levi, S.; Arosio, P.; Cesareni,
G.; Thomas, C. D.; Shaw, W. V.; Harrison, P. M. Nature 1991, 349, 541-
544. (b) Proulxcurry, P. M.; Chasteen, N. D. Coord. Chem. ReV. 1995,
144, 347-368.
(3) (a) Conn, M. M.; Rebek, J., Jr. Chem. ReV. 1997, 97, 1647-1668. (b)
Swiegers, G. F.; Malefetse, T. J. Chem. ReV. 2000, 100, 3483-3537. (c)
Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005,
38, 371-380.
(4) (a) Martin, T.; Obst, U.; Rebek, J., Jr. Science 1998, 281, 1842-1845.
(b) Davis, A. V.; Raymond, K. N. J. Am. Chem. Soc. 2005, 127, 7912-
7919. (c) Kusukawa, T.; Fujita, M. J. Am. Chem. Soc. 2002, 124, 13576-
13582.
(5) (a) Heinz, T.; Rudkevich, D. M.; Rebek, J., Jr. Nature 1998, 394, 764-
766. (b) Tashiro, S.; Tominaga, M.; Kawano, M.; Therrien, B.; Ozki, T.;
Fujita, M. J. Am. Chem. Soc. 2005, 127, 4546-4547. (c) Kerchoffs, J.
M. C. A.; van Leeuwen, F. W. B.; Spek, A. L.; Kooijman, H.; Crego-
Calama, M.; Reinhoudt, D. N. Angew. Chem., Int. Ed. 2003, 42, 5717-
5722.
(6) (a) Turner, J. L.; Wooley, K. L. Nano Lett. 2004, 4, 683-688. (b) Pan,
D.; Turner, J. L.; Wooley, K. L. Chem. Commun. 2003, 2400-2401. (c)
Perkin, K. K.; Turner, J. L.; Wooley, K. L.; Mann, S. Nano Lett. 2005, 5,
1457-1461.
1
was observed by H NMR spectroscopy (Figure S4).
The crystal structure demonstrates that 2 has the [Pd6L28]12+ cage
of truncated octahedral geometry of around 2.6 nm in diameter
(Figure 1c). In this instance also, as in the case of cage 1, eight
C3-symmetric facial L2 ligands are connected at six truncated
octahedral corners via C4-symmetric square planar palladium(II)
ions as in cage 1. The combination of a 120° kink and the tilting
angle, 70°, between the central benzene and the pyridyl group again
provides the curvature needed for cage formation. The coordination
environment of the PdII center is very similar to that in cage 1.
However, the orientation of the pyridyl group is slightly different
from that in cage 1. The angle between the square plane of the
Pd(II) center and pyridyl plane is closer to orthogonal compared
with that in cage 1 (63.4° in cage 1 and 69.7-89.7° range, avg. )
79.0° in cage 2). The insertion of a methylene group in L2 has not
only increased the cavity volume of 2 to ∼2200 Å3 but also enlarged
the port size to 4.1 × 8.0 Å2. However, an atomic force microscopy
(AFM) study of cage 2 showed that the cages had a height of 1.8
( 0.1 nm (mean ( standard deviation, N ) 100) with narrow height
distribution (Figure S5). This value is about 30% smaller than the
calculated size of 2.6 nm from the crystal structure. This compres-
sion of the cages contrasts with the recent result of Fujita’s M12L24
endo-filled nanoball, where the height of the cage measured by
AFM matches the estimated size from molecular modeling.17 We
believe that this decrease in height in cage 2 is due to tip-induced
compression18 of the cage, which suggests the nonrigidity of cage
2 contrary to Fujita’s rigid endo-filled nanoball.
(7) (a) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. Acc.
Chem. Res. 2005, 38, 351-360. (b) Yoshizawa, M.; Takeyama, Y.;
Kusukawa, T.; Fujita, M. Angew. Chem., Int. Ed. 2002, 41, 1347-1349.
(8) (a) Caulder, D. L.; Raymond, K. N. J. Chem. Soc., Dalton Trans. 1999,
1185-1200. (b) Seidel, S.; Stang, P. J. Acc. Chem. Res. 2002, 35, 972-
983. (c) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem.
Res. 2005, 38, 371-380.
(9) Umemoto, K.; Yamaguchi, K.; Fujita, M. J. Am. Chem. Soc. 2000, 122,
7150-7151.
(10) (a) Takeda, N.; Umemoto, K.; Yamaguchi, K.; Fujita, M. Nature 1999,
398, 794-796. (b) Umemoto, K.; Tsukui, H.; Kusukawa, T.; Biradha,
K.; Fujita, M. Angew. Chem., Int. Ed. 2001, 40, 2620-2622.
(11) (a) Yamanoi, Y.; Sakamoto, Y.; Kusukawa, T.; Fujita, M.; Sakamoto, S.;
Yamaguchi K. J. Am. Chem. Soc. 2001, 123, 980-981. (b) Yoshizawa,
M.; Nakagawa, J.; Kumazawa, K.; Nagao, M.; Kawano, M.; Ozeki, T.;
Fujita, M. Angew. Chem., Int. Ed. 2005, 44, 1810-1813.
(12) Saalfrank, R. W.; Glaser, H.; Demleitner, B.; Hampel, F.; Chowdhry, M.
M.; Schu¨nemann, V.; Trautwein, A. X.; Vaughan, G. B. M.; Yeh, R.;
Davis, A. V.; Raymond, K. N. Chem.sEur. J. 2002, 8, 493-497.
(13) (a) Fujita, M.; Oguro, D.; Miyazawa, M.; Oka, H.; Yamaguchi, K.; Ogura,
K. Nature 1995, 378, 469-471. (b) Caulder, D. L.; Powers, R. E.; Parac,
T. N.; Raymond, K. N. Angew. Chem., Int. Ed. 1998, 37, 1840-1843.
(c) Bru¨ckner, C.; Powers, R. E.; Raymond, K. N. Angew. Chem., Int. Ed.
1998, 37, 1837-1839. (d) Paul, R. L.; Bell, Z. R.; Jeffery, J. C.;
McCleverty, J. A.; Ward, M. D. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
4883-4888.
(14) (a) Tominaga, M.; Suzuki, K.; Murase, T.; Fujita, M. J. Am. Chem. Soc.
2005, 127, 11950-11951. (b) Tominaga, M.; Suzuki, K.; Kawano, M.;
Kusukawa, T.; Ozeki, T.; Sakamoto, S.; Yamaguchi, K.; Fujita, M. Angew.
Chem., Int. Ed. 2004, 43, 5621-5625. (c) Olenyuk, B.; Whiteford, J. A.;
Fechtenkotter, A.; Stang, P. J. Nature 1999, 398, 796-799.
(15) (a) Liu, Y.; Kravtsov, V. C.; Beauchamp, D. A.; Eubank, J. F.; Eddaoudi,
M. J. Am. Chem. Soc. 2005, 127, 7266-7267. (b) Chand, D. K.; Biradha,
K.; Fujita, M.; Sakamoto, S.; Yamaguchi, K. Chem. Commun. 2002,
2486-2487. (c) Liu, H.-K.; Tong, X. Chem. Commun. 2002, 1316-1317.
(16) Ligand conformation: When the pyridyl nitrogen and amide oxygen of
the ligand are in the same side, the conformation of the ligand was defined
as syn type, and when in the opposite side, as anti type (Figure S2; see
Supporting Information).
In summary, we have generalized the preparation of nanosized
octahedral cages using suitably designed C3-symmetric triangular
ligands as facial components and C4-symmetric PdII metal ions as
corner linkers. The curvature needed for truncation at the octahedral
vertices was accomplished using ligands with a tilted pyridyl group
and a nitrogen donor atom in a ∼120° kink. These face-driven
corner-linked nanocages have 12 ports at the edges of the truncated
octahedron. Depending on the size of the facial ligands, not only
the cavity size but also the port size of the cage could be controlled.
This offers potential possibilities of developing suitable nanosized
(17) Tominaga, M.; Suzuki, K.; Murase, T.; Fujita, M. J. Am. Chem. Soc. 2005,
127, 11950-11951.
(18) Murray, M. N.; Hansma, H. G.; Bezanilla, M.; Sano, T.; Ogletree, D. F.;
Kolbe, W.; Smith, C. L.; Cantor, C. R.; Spengler, S.; Hansma, P. K. Proc.
Natl. Acad. Sci. U.S.A. 1993, 90, 3811-3814.
JA060051H
9
J. AM. CHEM. SOC. VOL. 128, NO. 11, 2006 3531