1524
U. Warmers, W.A. Konig / Phytochemistry 52 (1999) 1519±1524
È
1.26±1.36 (2H, m, H-1a, H-9a), 1.36±1.43 (1H, m, H-
1b), 1.51±1.61 (1H, m, H-8b), 1.55±1.71 (2H, m, H-2a,
H-2b), 1.61±1.73 (1H, m, H-8a), 1.69±1.78 (1H, m, H-
7), 1.87 (1H, bs, OH), 1.94±2.07 (2H, m, H-3a/b, H-
11), 2.17 (1H, d, J = 10.7 Hz, H-5), 2.32 (1H, bd,
J = 12.2 Hz, H-3), 4.06 (1H, dd, 5.1, 10.7 Hz, H-6),
4.66 (1H, d, J = 1.0 Hz, H-15a/b), 4.97 (1H, d,
J = 1.0 Hz, H-15a/b); 13C NMR (125 MHz, CDCl3):
17.92 (q, C-14), 22.12 (q, C-13), 22.47 (t, C-8), 24.25
(t, C-2), 25.02 (q, C-12), 25.15 (d, C-11), 36.08 (t, C-9),
37.64 (s, C-10), 38.18 (t, C-3), 42.14 (d, C-1), 44.84 (d,
C-7), 52.85 (d, C-5), 70.12 (d, C-6), 106.40 (t, C-15),
148.11 (s, C-4); MS (EI, 70 eV): m/z (rel. int.) 222 (2)
[M+], 207 (5), 204 (21) [M+-H2O], 189 (10), 179 (11),
161 (30), 137 (21), 121 (23), 109 (100), 105 (21), 95
(37), 93 (33), 91 (24), 81 (39), 79 (30), 77 (18), 69 (20),
67 (28), 55 (34), 43 (27), 41 (64), 39 (21).
analysed by GC±MS and by GC on various capillary
columns with polysiloxane and cyclodextrin phases
and compared with the hydrogenation products of 7.
One of the hydrogenated eudesmanes from both reac-
tions has identical retention times on polysiloxane- and
on cyclodextrin phases.
3.15. Hydrogenation of 5 and 6
The hydrogenation of 5 and 6 was performed analo-
gously to the hydrogenation of 1. The reaction pro-
ducts were analysed by GC±MS and by GC on
various capillary columns with polysiloxane and cyclo-
dextrin phases and compared with the hydrogenation
products of 7. The hydrogenated eudesmanes obtained
from the dierent reactions have all identical retention
times on polysiloxane- and on cyclodextrin phases.
3.12. Dehydration of (+)-7-epi-junenol (4)
Acknowledgements
The dehydration was performed analogously to the
dehydration of 1. The reaction products were isolated
and identi®ed as trans-eudesma-4(15),6-diene (5) and
trans-eudesma-4(15),7-diene (6). 5: 1H NMR (500
MHz, CDCl3): d 0.63 (3H, s, H-14), 1.02 (6H, d,
J = 7.0 Hz, H-12, H-13), 2.53 (1H, bs, H-5), 4.56 (1H,
bs, H-15a/b), 4.75 (1H, bs, H-15a/b), 5.41 (1H, s, H-
6); MS (EI, 70 eV): m/z (rel. int.) 204 (41) [M+], 189
(22), 161 (100), 133 (43), 119 (30), 105 (54), 95 (23), 93
(24), 91 (54), 81 (27), 79 (25), 77 (23), 67 (25), 55 (24),
The ®nancial support by a scholarship from the
State of Hamburg to U.W. and by the Fonds der
Chemischen Industrie is gratefully acknowledged.
References
Andersen, N. H., Ohta, Y., Moore, A., & Tseng, C.-L. W. (1978).
Tetrahedron, 34, 41.
1
41 (52). 6: H NMR (500 MHz, CDCl3): d 0.67 (3H, s,
Asakawa, Y., Toyota, M., & Takemoto, T. (1980). Phytochemistry,
19, 2141.
H-14), 1.01 (3H, d, J = 7.0 Hz, H-12), 1.02 (3H, d,
J = 7.0 Hz, H-13), 4.57 (1H, bs, H-15a/b), 4.78 (1H,
bs, H-15a/b), 5.29 (1H, d, J = 5.7 Hz, H-8); MS (EI,
70 eV): m/z (rel. int.) 204 (68) [M+], 189 (38), 161
(80), 147 (33), 133 (70), 121 (24), 119 (42), 108 (42),
107 (31), 105 (100), 95 (35), 93 (84), 91 (80), 81 (33),
79 (50), 77 (39), 67 (36), 55 (36), 53 (29), 43 (29), 41
(68), 39 (30).
Breitholle, E. G., & Fallis, A. G. (1978). J. Org. Chem., 43, 1964.
Brennan, M. R., & Erickson, K. L. (1982). J. Org. Chem., 47, 3917.
Connolly, J. D., Harding, A. E. & Thornton, I. M. S. (1972). J.
Chem. Soc. Chem. Commun., 3121.
Connolly, J. D., Harding, A. E. & Thornton, I. M. S. (1974). J.
Chem. Soc. Perkin Trans. 1, 2487.
Frahm, J.-P.,
Verlag.
& Frey, W. (1992). Moos¯ora. Stuttgart: Ulmer-
Hardt, I., & Konig, W. A. (1994). J. Chromatogr. A, 666, 611.
Jakupovic, J., Ganzer, U., Pritschow, P., Lehmann, L., Bohlmann,
F., & King, R. M. (1992). Phytochemistry, 31, 863.
3.13. Hydrogenation of (+)-d-selinene (7)
Joulain, D., & Konig, W. A. (1998). The atlas of spectral data of ses-
quiterpenen hydrocarbons. Hamburg: E.B.-Verlag.
To a soln. of 1 mg of 7 in 1 ml n-hexane, 0.5 mg
Pd/C were added. The suspension was treated with H2
and stirred under H2 at room temp. for 1 h. The reac-
tion mixture was ®ltered and the reaction products
were analysed by GC±MS and by GC on various
capillary columns with polysiloxane and cyclodextrin
phases.
Kaur, B., & Kalsi, P. S. (1985). Phytochemistry, 24, 2007.
Konig, W. A., Bulow, N., Fricke, C., Melching, S., Rieck, A., &
Muhle, H. (1996). Phytochemistry, 43, 629.
Marshall, J. A., & Cohen, N. (1964). J. Org. Chem., 29, 3727.
McMurry, J. E., & Bosch, G. K. (1987). J. Org. Chem., 52, 4885.
Rucker, G., & Hefendehl, W. F. (1978). Phytochemistry, 17, 809.
Tori, M., Nagai, T., Asakawa, Y., Huneck, S., & Ogawa, K. (1993).
Phytochemistry, 34, 181.
Toyota, M., & Asakawa, Y. (1990). Phytochemistry, 29, 3664.
Warmers, U., Wihstutz, K., Bulow, N., Fricke, C., & Konig, W. A.
(1998). Phytochemistry, 49, 1723.
3.14. Hydrogenation of 2
The hydrogenation of 2 was performed analogously
to the hydrogenation of 1. The reaction products were
Williams, H. J., Sattler, I., Moyna, G., Scott, A. I., Bell, A. A., &
Vinson, S. B. (1995). Phytochemistry, 40, 1633.