Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC05112C
COMMUNICATION
Journal Name
applied force in a vibration event.37 Due to this property, ZnO
NRs built up a higher piezopotential than particles with equal
mechanical vibration. It is for this reason that non-rod shaped
ZnO nanoparticles exhibit relatively limited selectivity for
reducing CH4. In addition, the photocatalytic performance and
the selectivity of CH4 production have not been improved by
anatase TiO2 (none piezoelectric properties) under L+S
condition (Fig. S8, ESI†). These results further confirm that the
enhancement of photocatalytic efficiency of ZnO arises from
the piezo-assistance.
21 Y. Xie, S. Wang, L. Lin, Q. Jing, Z.-H. Lin, S. Niu, Z. Wu and Z. L.
Wang, ACS nano, 2013, , 7119-7125.
22 S. Bai, L. Zhang, Q. Xu, Y. Zheng, Y. Qin and Z. L. Wang, Nano
Energy, 2013, , 749-753.
23 S. Xu, Y. Wei, J. Liu, R. Yang and Z. L. Wang, Nano Lett., 2008,
, 4027-4032.
24 O. Carp, Prog. Solid. State. Ch., 2004, 32, 33-177.
25 Q. Wang, B. Geng, S. Wang, Y. Ye and B. Tao, Chem.
Commun., 2010, 46, 1899-1901.
7
2
8
26 S. C. Yan, S. X. Ouyang, J. Gao, M. Yang, J. Y. Feng, X. X. Fan, L.
J. Wan, Z. S. Li, J. H. Ye, Y. Zhou and Z. G. Zou, Angew. Chem.,
Int. Ed., 2010, 49, 6400-6404.
In summary,
a new fundamental piezo-photocatalytic
27 Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan and Z.
Zou, J. Am. Chem. Soc., 2010, 132, 14385-14387.
28 E. E. Benson, C. P. Kubiak, A. J. Sathrum and J. M. Smieja,
Chem. Soc. Rev., 2009, 38, 89-99.
29 A. J. Morris, G. J. Meyer and E. Fujita, Accounts. Chem. Res.,
2009, 42, 1983-1994.
mechanism is demonstrated. Photo-generated carriers can be
enriched on the local surface of ZnO NRs by the piezoelectric
potential formed in piezoelectric semiconductor, hence the
local density of photo-generated electrons and the selectivity
of methane production are increased. Although the improved
degree is not obvious in our work, it can present a possibility
for using piezoelectric effect to enhance the multi-electron
reaction. This practice not only realizes the energy recycling by
means of energy wastes such as noise or stray vibrations from
the environment, but also makes contribution to
environmental sustainability.
30 Y. Hori, in Modern aspects of electrochemistry, Springer,
2008, pp. 89-189.
31 G. Dong and L. Zhang, J. Mater. Chem., 2012, 22, 1160-1166.
32 S. Zhou, Y. Liu, J. Li, Y. Wang, G. Jiang, Z. Zhao, D. Wang, A.
Duan, J. Liu and Y. Wei, Appl. Catal., B, 2014, 158-159, 20-29.
33 X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang and Z. L.
Wang, Nano Energy, 2015, 13, 414-422.
34 D. Tiwari, S. Dunn and Q. Zhang, Mater. Res. Bull., 2009, 44
1219-1224.
,
35 X. Wang, G. Liu, Z. G. Chen, F. Li, L. Wang, G. Q. Lu and H. M.
Cheng, Chem. Commun., 2009, DOI: 10.1039/b904668b,
3452-3454.
36 J. B. Baxter and C. A. Schmuttenmaer, The J. Phys. Chem. B.,
2006, 110, 25229-25239.
Notes and references
1
2
3
Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng and Y.
Wang, Angew. Chem., Int. Ed., 2013, 52, 5776-5779.
Y. Li, W.-N. Wang, Z. Zhan, M.-H. Woo, C.-Y. Wu and P.
Biswas, Appl. Catal., B, 2010, 100, 386-392.
W. N. Wang, W. J. An, B. Ramalingam, S. Mukherjee, D. M.
Niedzwiedzki, S. Gangopadhyay and P. Biswas, J. Am. Chem.
Soc., 2012, 134, 11276-11281.
37 J. Song, J. Zhou and Z. L. Wang, Nano Lett., 2006,
1662.
6, 1656-
4
5
T. Yui, A. Kan, C. Saitoh, K. Koike, T. Ibusuki and O. Ishitani,
ACS Appl. Mat. Interfaces, 2011, 3, 2594-2600.
M. Manzanares, C. Fàbrega, J. Oriol Ossó, L. F. Vega, T.
Andreu and J. R. Morante, Appl. Catal., B, 2014, 150-151, 57-
62.
6
7
H. Yamashita, Y. Fujii, Y. Ichihashi, S. G. Zhang, K. Ikeue, D. R.
Park, K. Koyano, T. Tatsumi and M. Anpo, Catal. Today., 1998,
45, 221-227.
K. Kočí, K. Matějů, L. Obalová, S. Krejčíková, Z. Lacný, D.
Plachá, L. Čapek, A. Hospodková and O. Šolcová, Appl. Catal.,
B, 2010, 96, 239-244.
8
9
L. Jia, J. Li and W. Fang, Catal. Commun., 2009, 11, 87-90.
W. Jiang, X. Yin, F. Xin, Y. Bi, Y. Liu and X. Li, Appl. Surf. Sci.,
2014, 288, 138-142.
10 K. Ikeue, H. Yamashita, M. Anpo and T. Takewaki, The J. Phys.
Chem. B., 2001, 105, 8350-8355.
11 M. B. Starr and X. Wang, Nano Energy, 2015, 14, 296-311.
12 J. Yang, J. Chen, Y. Liu, W. Yang, Y. Su and Z. L. Wang, ACS
nano, 2014, 8, 2649-2657.
13 Y. Liu, S. Niu, Q. Yang, B. D. Klein, Y. S. Zhou and Z. L. Wang,
Adv. Mater., 2014, 26, 7209-7216.
14 W. Wu, C. Pan, Y. Zhang, X. Wen and Z. L. Wang, Nano Today,
2013,
15 Z. L. Wang, Adv. Mater., 2012, 24, 4632-4646.
16 Z. L. Wang, Nano Today, 2010, , 540-552.
8, 619-642.
5
17 Z. L. Wang, Adv. Mater., 2007, 19, 889-892.
18 X. Wang, J. Song, J. Liu and Z. L. Wang, Science, 2007, 316
102-105.
,
19 Z. L. Wang and J. Song, Science, 2006, 312, 242-246.
20 Y. Yang, K. C. Pradel, Q. Jing, J. M. Wu, F. Zhang, Y. Zhou, Y.
Zhang and Z. L. Wang, ACS nano, 2012, , 6984-6989.
6
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins