RSC Advances
Paper
9 E. Tsukuda, S. Sato, R. Takahashi and T. Sodesawa, Catal.
Commun., 2007, 8, 1349–1353.
4. Conclusions
10 S.-H. Chai, H.-P. Wang, Y. Liang and B.-Q. Xu, Appl. Catal., A,
2009, 353, 213–222.
11 J. L. Dubois, C. Duquenne and W. Hoelderich, WO
2006087083 2006.
12 J. L. Dubois, C. Duquenne, W. Hoelderich and J. Kervennal,
WO 2006087084 2006.
13 S.-H. Chai, H.-P. Wang, Y. Liang and B.-Q. Xu, Green Chem.,
2007, 9, 1130–1136.
14 A. Ulgen and W. F. Hoelderich, Appl. Catal., A, 2011, 400, 34–
38.
15 S.-H. Chai, H.-P. Wang, Y. Liang and B.-Q. Xu, J. Catal., 2007,
250, 342–349.
16 N. R. Shiju, D. R. Brown, K. Wilson and G. Rothenberg, Top.
Catal., 2010, 53, 1217–1223.
17 M. Massa, A. Andersson, E. Finocchio and G. Busca, J. Catal.,
2013, 307, 170–184.
Total amounts of acid and base sites of WO3/ZrO2 catalysts
prepared by impregnation method decreased with the increase
of calcination temperature. In gas-phase dehydration of glyc-
erol, the glycerol consumption rate increased almost linearly
with total amounts of acid and base sites, while those calcined
at 450–700 ꢀC gave highest acrolein selectivities of 68–71%.
Moreover, the decay rate of the catalysts slowed down with the
increase of total amounts of acid and base sites. The most
suitable calcination temperature for WO3/ZrO2 catalyst was
450 ꢀC in consideration of high acrolein yield and long lifetime
of the catalyst. Furthermore, the deactivation of the catalyst
could be greatly improved by doping small amount of niobium.
Most of the acidic sites on WO3/ZrO2-450 with and without
doping Nb2O5 are Lewis acid sites and the Brønsted acid sites
are few and relatively weak. The optimal catalytic performance
was obtained over 3% NbWOx/ZrO2-450. The glycerol conver-
sion was kept at 82% aer 24 h. The improvement of catalyst is
attributed to that basic sites on the ZrO2 support are neutralized
by niobium. The glycerol consumption rate increases almost
linearly with both amounts of acid and base sites. Nevertheless,
there are optimal amounts of acid and base sites to obtain the
maximum acrolein yield. Fine tuning the ratio of acid/base sites
is important in achieving good catalytic performance in gas-
phase dehydration of glycerol to generate acrolein. High glyc-
erol consumption rate, high acrolein yield, and slow catalyst
decay rate are observed over Nb-doped WO3/ZrO2-450 catalysts
which have acid/base ratios of 4.0–5.4. The spent catalysts could
18 Y. Y. Lee, K. A. Lee, N. C. Park and Y. C. Kim, Catal. Today,
2014, 232, 114–118.
`
19 P. Lauriol-Garbey, J. M. M. Millet, S. Loridant, V. Belliere-
Baca and P. Rey, J. Catal., 2011, 281, 362–370.
20 P. Lauriol-Garbey, G. Postole, S. Loridant, A. Auroux,
V. Belliere-Baca, P. Rey and J. M. M. Millet, Appl. Catal., B,
2011, 106, 94–102.
`
21 P. Lauriol-Garbey, S. Loridant, V. Belliere-Baca, P. Rey and
J.-M. M. Millet, Catal. Commun., 2011, 16, 170–174.
`
22 R. Znaiguia, L. Brandhorst, N. Christin, V. Belliere Baca,
P. Rey, J.-M. M. Millet and S. Loridant, Microporous
Mesoporous Mater., 2014, 196, 97–103.
ꢀ
be easily regenerated by calcination at 450 C for 3 h, and the
23 A. Ulgen and W. Hoelderich, Catal. Lett., 2009, 131, 122–128.
catalytic activities were well retained.
´
´
24 A. Martınez, G. Prieto, M. A. Arribas, P. Concepcion and
´
J. F. Sanchez-Royo, J. Catal., 2007, 248, 288–302.
Conflicts of interest
´
´
25 C. Garcıa-Sancho, J. A. Cecilia, A. Moreno-Ruiz, J. M. Merida-
There are no conicts to declare.
´
´
Robles, J. Santamarıa-Gonzalez, R. Moreno-Tost and
P. Maireles-Torres, Appl. Catal., B, 2015, 179, 139–149.
¨
26 C.-J. Jia, Y. Liu, W. Schmidt, A.-H. Lu and F. Schuth, J. Catal.,
Acknowledgements
2010, 269, 71–79.
Financial supports from Ministry of Science & Technology,
Taiwan (104-2119-M-002-019) are gratefully acknowledged.
27 M. Dalil, D. Carnevali, M. Edake, A. Auroux, J.-L. Dubois and
G. S. Patience, J. Mol. Catal. A: Chem., 2016, 421, 146–155.
28 M. Dalil, M. Edake, C. Sudeau, J.-L. Dubois and
G. S. Patience, Appl. Catal., A, 2016, 522, 80–89.
29 M. Dalil, D. Carnevali, J.-L. Dubois and G. S. Patience, Chem.
Eng. J., 2015, 270, 557–563.
Notes and references
1 L. C. Meher, D. Vidya Sagar and S. N. Naik, Renewable
Sustainable Energy Rev., 2006, 10, 248–268.
ˇ ´
30 D. Stosic, S. Bennici, J.-L. Couturier, J.-L. Dubois and
2 F. Yang, M. A. Hanna and R. Sun, Biotechnol. Biofuels, 2012,
5, 13.
3 B. Katryniok, S. Paul, M. Capron and F. Dumeignil,
ChemSusChem, 2009, 2, 719–730.
4 S. Kahlbaum, FR Patent No. 695931, 1930.
5 M. Watanabe, T. Iida, Y. Aizawa, T. M. Aida and H. Inomata,
Bioresour. Technol., 2007, 98, 1285–1290.
A. Auroux, Catal. Commun., 2012, 17, 23–28.
31 J. H. Bitter, M. K. van der Lee, A. G. T. Slotboom, A. J. van
Dillen and K. P. de Jong, Catal. Lett., 2003, 89, 139–142.
32 A. K. Kinage, P. P. Upare, P. Kasinathan, Y. K. Hwang and
J.-S. Chang, Catal. Commun., 2010, 11, 620–623.
33 D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled and
E. Iglesia, J. Phys. Chem. B, 1999, 103, 630–640.
6 H. Groll and G. Hearne, US Pat., No. 2042224 1936.
7 H. Hoyt and T. Manninen, US Pat., No. 2558520 1951.
8 A. Neher, T. Haas, A. Dietrich, H. Klenk and W. Girke, DE
Patent No. 4238493, 1994.
´
´
34 C. Garcıa-Sancho, R. Moreno-Tost, J. Merida-Robles,
´
´
´
´
J. Santamarıa-Gonzalez, A. Jimenez-Lopez and P. Maireles-
Torres, Appl. Catal., A, 2012, 433, 179–187.
41888 | RSC Adv., 2017, 7, 41880–41888
This journal is © The Royal Society of Chemistry 2017