, 2001, 11(3), 90–91
unexplored area.6 Laser-induced photolysis of selenophene seems
to be a formally similar process.7 Note that a topologically analo-
gous isomerization has been only observed8 after lithiation of
2,6-di-tert-butylseleno-4-pyron, where the acetylenic interme-
diate ButCºC–CO–CH=C(SeMe)But was evidently trapped
with methyl triflate. The selenopyran derivatives and their reac-
tivity, including the solid-state UV photocolouration of 3-like
4H-selenopyrans, will be considered in detail elsewhere.
C(17)
C(18)
C(21)
C(16)
C(22)
C(23)
C(20)
F(1)
C(13)
C(19)
C(15)
C(14)
C(4)
C(26)
C(11)
C(10)
C(3)
C(12)
C(24)
C(27)
C(5)
C(9)
C(8)
C(7)
C(2)
C(6)
F(2)
C(28)
C(29)
C(25)
C(30)
References
1 Chem. Rev., Photochromism: Memories and Switches, ed. M. Irie, 2000,
100 (5).
Se(1)
2 (a) Y. Mori and K. Maeda, J. Chem. Soc., Perkin Trans. 2, 1991, 2061;
(b) H. Pirelahi, I. Parchamazad, M. S. Abaii and S. Sheikhebrahimi,
Phosphorus Sulfur Silicon, 1991, 59, 251; (c) P. Šebek, S. Nešpurek,
R. Hrabal, M. Adamec and J. Kuthan, J. Chem. Soc., Perkin Trans. 2,
1992, 1301; (d) S. Böhm, P. Šebek, S. Nešpurek and J. Kuthan, Collect.
Czech. Chem. Commun., 1994, 59, 1115; (e) J. Kroulík, M. Chadim,
M. Polášek, S. Nešpurek and J. Kuthan, Collect. Czech. Chem. Commun.,
1998, 63, 662.
3 J. Kuthan, P. Šebek and S. Böhm, Adv. Heterocycl. Chem., 1994, 59, 179.
4 B. I. Drevko, M. I. Smushkin and V. G. Kharchenko, Khim. Geterotsikl.
Soedin., 1997, 604 [Chem. Heterocycl. Compd. (Engl. Transl.), 1997, 33,
520].
5 L. E. E. Christiaens, in Comprehensive Heterocyclic Chemistry, ed.
A. McKillop, Pergamon, Oxford, 1996, vol. 5, ch. 5.11, p. 619.
8 M. R. Detty and L. W. McGarry, J. Org. Chem., 1988, 53, 1203.
9 (a) G. M. Sheldrick, SHELXS-86, Program for Crystal Structure
Solution, University of Göttingen, Göttingen, Germany, 1986; (b) D. J.
Watkin, R. J. Carruthers and P. Betteridge, CRYSTALS, Chemical Crys-
tallography Laboratory, Oxford, UK, 1998, issue 10; (c) J. R. Carruthers
and D. J. Watkin, Acta Crystallogr., Sect. A, 1979, 35, 698; (d) L. Zsolnai
and G. Huttner, XPMA, ZORTEP, University of Heidelberg, 1994.
Figure 1 Molecular structure of compound 4b. Selected bond lengths (Å):
Se(1)–C(2) 1.920(3), Se(1)–C(5) 1.907(3), C(2)–C(6) 1.331(4), C(2)–C(3)
1.531(3), C(3)–C(4) 1.519(3), C(4)–C(5) 1.329(4); selected bond angles (°):
C(2)–Se(1)–C(5) 87.43(9), Se(1)–C(2)–C(3) 110.8(2), C(2)–C(3)–C(4)
105.7(2), C(3)–C(4)–C(5) 120.2(2), Se(1)–C(5)–C(4) 112.1(2), Se(1)–
C(2)–C(6) 119.2(2); selected torsion angles (°): C(2)–Se(1)–C(5)–C(4)
7.8(2), C(5)–Se(1)–C(2)–C(3) –16.4(2), Se(1)–C(2)–C(3)–C(4) 20.1(2),
Se(1)–C(2)–C(6)–C(7) –179.9(2).
= 3.79 dm3 mol–1 cm–1) and a shoulder at about 287 or 283 nm
for compound 3a or 3b, respectively. A similarity between the
UV–VIS spectra of selenopyrans and appropriate derivatives of
thiopyrans2(c) is evident, and it can be attributed to identical
quantal transitions.
To our knowledge, the described conversion 3 ® 4 is a unique
example of photochemical ring conversion among six-membered
selenium heterocycles5 and, contrary to other 2,4,4,6-tetraaryl-
4H-(hetero)pyrans,2 no photochemical di-π-methane rearrange-
ment of one of the 4,4-phenyl groups has been observed. The
photochemistry of such di-π-selenide systems belongs to an
‡
Crystal data for 4b: C29H20F2Se, M = 485.43, monoclinic, space
group P21/c, a = 11.495(2) Å, b = 11.909(4) Å, c = 16.353(1) Å, b =
90.50(1)°, V = 2238.7 Å3, Z = 4, dcalc = 1.44 g cm–3, F(000) = 982.88,
m = 2.52 mm–1. 8525 reflections measured with an Enraf Nonius CAD4
diffractometer (293 K, graphite-monochromated CuKα radiation, l =
= 1.54184 Å, w/2q scan mode, 2q range of 5–134°). The structure was
solved by direct methods and anisotropically refined by full-matrix least
squares.9 Hydrogen atoms were located from a ∆–r map, positions and
isotropical thermal motion were refined. The final agreement factors are
R = 4.11% and Rw = 4.11%. Atomic coordinates, bond lengths, bond
angles and thermal parameters have been deposited at the Cambridge
Crystallographic Data Centre (CCDC). For details, see ‘Notice to
Authors’, Mendeleev Commun., Issue 1, 2001. Any request to the CCDC
for data should quote the full literature citation and the reference number
1135/85.
§
1
For 4a: mp 150–152 °C, preparative yield 11%. H NMR (CDCl3) d:
6.588 (s, 1H, 6-H), 6.701 (s, 1H, 4-H), 7.218–7.368 (m, 14H, aromatic),
7.382 (m, 4H, o-3,3-Ph), 7.480 (m, 2H, o-5-Ph). 13C NMR (CDCl3) d:
74.73 (s, 1C, 3-C), 126.83 (d, 2CH, o-5-Ph), 126.92 (d, 2CH, o-6-Ph),
127.08 (d, CH, p-6-Ph), 127.89 (d, 2CH, p-3,3-Ph), 128.32 (d, 4CH,
m-3,3-Ph), 128.45 (d, 2CH, m-5-Ph), 128.49 (d, 1CH, p-5-Ph), 128.53
(d, 4CH, o-3,3-Ph), 128.60 (d, 2CH, m-6-Ph), 129.85 (d, 1CH, 6-CH),
129.91 (d, 1CH, 4-CH), 135.11 (s, 1C, i-5-Ph), 136.22 (s, 1C, 5-C),
137.59 (s, 1C, i-6-Ph), 144.42 (s, 1C, 2-C), 145.26 (s, 2C, i-3,3-Ph).
MS, m/z (%): 450.0885 (100, M+, C29H22Se), 373 (47), 291 (52), 278
(9), 215 (35), 191 (23), 165 (11).
1
For 4b: mp 159–161 °C, preparative yield 34%. H NMR (CDCl3) d:
6.535 (s, 1H, 6-H), 6.619 (s, 1H, 4-H), 7.034 (m, 2H, m-5-C6H4F, 0.5 of
AA'BB'X spectrum, JHF 8.4 Hz, J 8.9 Hz), 7.060 (m, 2H, m-6-C H F,
Σ
6
4
0.5 of AA'BB'X spectrum, JHF 8.6 Hz, J 8.7 Hz), 7.265 (m, 2H, o-6-
Σ
C6H4F, half of AA'BB'X spectrum, JHF 5.3 Hz, J 8.7 Hz), 7.290 (m,
2H, p-3,3-Ph), 7.337–7.367 (m, 8H, o-3,3-Ph and m-3,3-Ph), 7.442 (m,
2H, o-5-C6H4F, 0.5 of AA'BB'X spectrum, JHF 5.2 Hz, J 8.9 Hz). 13
Σ
C
Σ
NMR (CDCl3) d: 74.66 (S, 1C, 3-C), 115.41 (Dd, 2CH, m-5-C6H4F,
JCF 21.5 Hz), 115.59 (Dd, 2CH, m-6-C6H4F, JCF 22.0 Hz), 126.94 (D,
2CH, p-3,3-Ph), 128.38 (D, 4CH, m-3,3-Ph), 128.48 (D, 4CH, o-3,3-
Ph), 128.59 (Dd, 2CH, o-5-C6H4F, JCF 8.3 Hz), 128.87 (Dd, 1CH, 6-CH,
JCF 1.5 Hz), 129.50 (Dd, 2CH, o-6-C6H4F, JCF 8.3 Hz), 129.93 (Dd,
1CH, 4-CH, JCF 1.5 Hz), 131.29 (Sd, 1C, i-5-C6H4F, JCF 2.9 Hz), 133.77
(Sd, 1C, i-6-C6H4F, JCF 2.9 Hz), 134.89 (S, 1C, 5-C), 143.31 (S, 1C, 2-C),
145.05 (S, 2C, i-3,3-Ph), 161.73 (Sd, 1CF, p-6-C6H4F, JCF 247.6 Hz),
162.77 (Sd, 1CF, p-5-C6H4F, JCF 249.0 Hz). MS, m/z (%): 486.0698
(100, M+, C29H20F2Se), 409 (37), 405 (58), 391 (11), 327 (29), 309 (29),
285 (9), 233 (32), 209 (24), 183 (13), 165 (6).
Received: 25th January 2001; Com. 01/1756
– 91–