S. Dumouchel et al. / Tetrahedron Letters 44 (2003) 2033–2035
2035
5845–5848; (e) Be´rillon, L.; Lepreˆtre, A.; Turck, A.; Ple´,
N.; Que´guiner, G.; Cahiez, G.; Knochel, P. Synlett 1998,
1359–1360; (f) Tre´court, F.; Breton, G.; Bonnet, V.;
Mongin, F.; Marsais, F.; Que´guiner, G. Tetrahedron Lett.
1999, 40, 4339–4342; (g) Abarbri, M.; Dehmel, F.;
Knochel, P. Tetrahedron Lett. 1999, 40, 7449–7453; (h)
Abarbri, M.; Thibonnet, J.; Be´rillon, L.; Dehmel, F.;
Rottla¨nder, M.; Knochel, P. J. Org. Chem. 2000, 65,
4618–4634; (i) Tre´court, F.; Breton, G.; Bonnet, V.;
Mongin, F.; Marsais, F.; Que´guiner, G. Tetrahedron
2000, 56, 1349–1360; (j) Jensen, A. E.; Dohle, W.;
Sapountzis, I.; Lindsay, D. M.; Vu, V. A.; Knochel, P.
Synthesis 2002, 565–569.
Scheme 4.
order to prevent side reactions while bromine–magne-
sium exchange proceeds at −10°C. Cross-coupling reac-
tions involving the lithium tri(quinolyl)magnesates are
currently underway.
6. Wittig, G.; Meyer, F. J.; Lange, G. Liebigs Ann. Chem.
1951, 571, 167–201.
7. (a) Seitz, L. M.; Brown, T. L. J. Am. Chem. Soc. 1966,
88, 4140–4147; (b) Coates, G. E.; Heslop, J. A. J. Chem.
Soc. (A) 1968, 514–518; (c) Thoennes, D.; Weiss, E.
Chem. Ber. 1978, 111, 3726–3731; (d) Greiser, T.; Kopf,
J.; Thoennes, D.; Weiss, E. Chem. Ber. 1981, 114, 209–
213; (e) Mulvey, R. E. Chem. Commun. 2001, 1049–1056.
8. (a) Ashby, E. C.; Chao, L.-C.; Laemmle, J. J. Org. Chem.
1974, 39, 3258–3263; (b) Kamienski, C. W.; Gastonia, N.
C.; Eastham, J. F. US Patent 3,847,883, 1974; Chem.
Abstr. 1975, 82, 58590; (c) Richey, H. G., Jr.; Farkas, J.,
Jr. Tetrahedron Lett. 1985, 26, 275–278; (d) Richey, H.
G., Jr.; Farkas, J., Jr. Organometallics 1990, 9, 1778–
1784; (e) Castaldi, G.; Borsotti, G. Eur. Pat. Appl. EP
491,326, 1992; Chem. Abstr. 1992, 117, 150667; (f)
Yasuda, M.; Ide, M.; Matsumoto, Y.; Nakata, M. Syn-
lett 1997, 899–902; (g) Yasuda, M.; Ide, M.; Matsumoto,
Y.; Nakata, M. Bull. Chem. Soc. Jpn. 1998, 71, 1417–
1429; (h) Ide, M.; Yasuda, M.; Nakata, M. Synlett 1998,
936–938; (i) Kitagawa, K.; Inoue, A.; Shinokubo, H.;
Oshima, K. Angew. Chem., Int. Ed. 2000, 39, 2481–2483;
(j) Iida, T.; Wada, T.; Mase, T. Japan Application No. JP
2000-024613 20000202, 2000; Chem. Abstr. 2001, 135,
152370; (k) Kondo, J.; Inoue, A.; Shinokubo, H.;
Oshima, K. Angew. Chem., Int. Ed. 2001, 40, 2085–2087;
(l) Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K.
J. Org. Chem. 2001, 66, 4333–4339; (m) Iida, T.; Wada,
T.; Tomimoto, K.; Mase, T. Tetrahedron Lett. 2001, 42,
4841–4844; (n) Inoue, A.; Kondo, J.; Shinokubo, H.;
Oshima, K. Chem. Eur. J. 2002, 8, 1730–1740.
Bromine–magnesium exchange; typical procedure: BuLi
(1.6 M in hexanes, 1.3 mmol) was added to a solution
of BuMgCl (2.0 M in ether, 0.65 mmol) in toluene (2
mL) at −10°C. After stirring for 1 h at −10°C, a
solution of 3-bromoquinoline (0.23 mL, 1.7 mmol) in
toluene (2 mL) was introduced at −30°C. After 2.5 h at
−10°C, benzaldehyde (0.17 mL, 1.7 mmol) and, 1 h
later, water (0.5 mL) were added. Dilution with AcOEt
(50 mL), drying over MgSO4 and column chromatogra-
phy using CH2Cl2/AcOEt (80:20) as an eluent afforded
alcohol 1a (65% yield).
References
1. (a) Katritzky, A. R.; Rees, C. W. In Comprehensive
Heterocyclic Chemistry; Boulton, A. J.; McKillop, A.,
Eds.; Pergamon Press, 1984; Vol. 2; (b) Gilchist, T. L.
Heterocyclic Chemistry; Longman, 1997.
2. (a) Que´guiner, G.; Marsais, F.; Snieckus, V.; Epsztajn, J.
Adv. Heterocycl. Chem. 1991, 52, 187–304; (b) Mongin,
F.; Que´guiner, G. Tetrahedron 2001, 57, 4059–4090; (c)
Turck, A.; Ple´, N.; Mongin, F.; Que´guiner, G. Tetra-
hedron 2001, 57, 4489–4505.
3. Concerning the bromine–lithium exchange of 2-, 3- and
4-bromoquinolines, see: (a) Gilman, H.; Soddy, T. S. J.
Org. Chem. 1957, 22, 565–566; (b) Ishikura, M.; Mano,
T.; Oda, I.; Terashima, M. Heterocycles 1984, 22, 2471–
2474; (c) Harrowven, D. C.; Sutton, B. J.; Coulton, S.
Tetrahedron Lett. 2001, 42, 2907–2910; (d) Harrowven,
D. C.; Sutton, B. J.; Coulton, S. Tetrahedron 2002, 58,
3387–3400.
4. (a) Wakefield, B. J. Organomagnesium Methods in
Organic Synthesis; Academic Press: London, 1995; (b)
Handbook of Grignard Reagents; Silverman, G. S., Rak-
ita, P. E. Eds.; Marcel Dekker: New York, 1996; (c)
Grignard Reagents: New Developments; Richey, H. G.,
Jr., Eds.; Wiley & Sons: New York, 1999.
9. Prepared from isopropylmagnesium chloride and lithium
2,2,6,6-tetramethylpiperidide: Eaton, P. E.; Lee, C.-H.;
Xiong, Y. J. Am. Chem. Soc. 1989, 111, 8016–8018.
10. The physical and spectral data are analogous to those
obtained for a commercial sample.
11. Yamamoto, Y.; Yanagi, A. Heterocycles 1981, 16, 1161–
1164.
12. Cherng, Y.-J. Tetrahedron 2002, 58, 1125–1129.
13. Prepared using a published procedure: Grundmann, G.
Chem. Ber. 1948, 81, 7.
14. Gros, P.; Fort, Y.; Caube`re, P. J. Chem. Soc., Perkin
Trans. 1 1997, 3597–3600.
5. Concerning the access to pyridylmagnesium reagents
through halogen–magnesium exchange, see: (a) Paradies,
H. H.; Go¨rbing, M. Angew. Chem. 1969, 81, 293; Angew.
Chem., Int. Ed. Engl. 1969, 8, 279; (b) Paradies, H. H.
Naturwissenschaften 1974, 61, 168–169; (c) Martin, G. J.;
Mechin, B.; Leroux, Y.; Paulmier, C.; Meunier, J. C. J.
Organomet. Chem. 1974, 67, 327–339; (d) Furukawa, N.;
Shibutani, T.; Fujihara, H. Tetrahedron Lett. 1987, 28,
15. Gomez, I.; Alonso, E.; Ramon, D. J.; Yus, M. Tetra-
hedron 2000, 56, 4043–4052.
16. Corcoran, R. C.; Bang, S. H. Tetrahedron Lett. 1990, 31,
6757–6758.
17. Furukawa, N.; Shibutani, T.; Matsumura, K.; Fujihara,
H.; Oae, S. Tetrahedron Lett. 1986, 27, 3899–3902.
18. Francisco, M. A.; Kurs, A.; Katritzky, A. R.; Rasala, D.
J. Org. Chem. 1988, 53, 4821–4826.