Communication
CrystEngComm
nm and 610 nm upon excitation at 490 nm and 540 nm, re-
spectively (ESI† Fig. S6). But crystals of compound 1 failed to
emit in that particular wavelength (ESI† Fig. S6). We have
also done fluorescence microscopy imaging of the crystals of
compound 2 and they show intense green and red emissions
on excitation at 490 nm and 540 nm, respectively
(Fig. 4a and b). Due to the conjugate effect of a Br⋯Br inter-
action and strong π–π stacking, the compound 2 crystals
show a solid state packing-induced emission. Fig. 4c and d
show the green and red fluorescence of the bent section of
the crystal of compound 2 on excitation at 490 nm and 540
nm under fluorescence microscope. Moreover, Fig. 4c and d
show the striped surface with stacked layers (marked with a
white arrow) along the length of the crystal. However, these
kind of stacked layers are absent in the straight section of
the crystal. Thus, under mechanical force, the bending of the
compound 2 crystals does not affect their fluorescent proper-
ties due to heavy atom effect (Fig. 4e and f).
In conclusion, we have reported that a Br⋯Br interaction
significantly enhanced the plasticity of the crystal and helped
with bending of the crystal. The studies showed that stacked
layers slid on top of one another, but ultimately bound to
each other due to a restorative effect of the Br⋯Br interac-
tion. Raman spectra of bent and straight crystals showed sig-
nificant intensity changes on bending, but amorphous mate-
rial did not appear. Furthermore, due to a heavy atom effect
compound 2 also showed green and red fluorescence under
suitable conditions which did not change under mechanical
stress. This crystal with plasticity and optoelectronic proper-
ties has potential for device fabrication.
6 P. Naumov, S. C. Sahoo, B. A. Zakharov and E. V. Boldyreva,
Angew. Chem., Int. Ed., 2013, 52, 9990.
7 D. P. Karothu, J. Weston, I. T. Desta and P. Naumov, J. Am.
Chem. Soc., 2016, 138, 13298.
8 N. K. Nath, T. Runcevski, C. Y. Lai, M. Chiesa, R. E.
Dinnebier and P. Naumov, J. Am. Chem. Soc., 2015, 137,
13866.
9 G. R. Krishna, R. Devarapalli, G. Lal and C. M. Reddy, J. Am.
Chem. Soc., 2016, 138, 13561.
10 L. O. Alimi, P. Lama, V. J. Smith and L. J. Barbour, Chem.
Commun., 2018, 54, 2994.
11 H. Liu, Z. Bian, Q. Cheng, L. Lan, Y. Wang and H. Zhang,
Chem. Sci., 2019, 10, 227–232.
12 C. M. Reddy, R. C. Gundakaram, S. Basavoju and M. T.
Kirchner, Chem. Commun., 2005, 3945.
13 S. Hayashi and T. Koizumi, Angew. Chem., Int. Ed., 2016, 55,
2701.
14 S. Ghosh, M. K. Mishra, S. B. Kadambi, U. Ramamurty and
G. R. Desiraju, Angew. Chem., Int. Ed., 2015, 54, 2674.
15 S. Ghosh and C. M. Reddy, Angew. Chem., Int. Ed., 2012, 51,
10319.
16 E. M. Horstman, R. K. Keswani, B. A. Frey, P. M. Rzeczycki,
V. LaLone, J. A. Bertke, P. J. A. Kenis and G. R. Rosania,
Angew. Chem., Int. Ed., 2017, 56, 1815.
17 D. R. MacFarlane and M. Forsyth, Adv. Mater., 2001, 13, 957.
18 P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R.
MacFarlane and M. Grätzel, J. Am. Chem. Soc., 2004, 126,
13590.
19 F. Chen, J. M. Pringle and M. Forsyth, Chem. Mater.,
2015, 27, 2666.
We acknowledge the IISER Kolkata, India, for financial as-
sistance. A. Paikar acknowledges the UGC, India for fellow-
ship. D. Podder thanks CSIR, India for research fellowship. S.
Roy Chowdhury and S. Sasmal acknowledge IISER-Kolkata for
fellowship.
20 J. Harada, T. Shimojo, H. Oyamaguchi, H. Hasegawa, Y.
Takahashi, K. Satomi, Y. Suzuki, J. Kawamata and T. Inabe,
Nat. Chem., 2016, 8, 946.
21 J. Harada, M. Ohtani, Y. Takahashi and T. Inabe, J. Am.
Chem. Soc., 2015, 137, 4477.
22 Y. Z. Sun, B. Huang, W. J. Xu, D. D. Zhou, S. L. Chen, S. Y.
Zhang, Z. Y. Du, Y. R. Xie, C. T. He, W. X. Zhang and X. M.
Chen, Inorg. Chem., 2016, 55, 11418.
Conflicts of interest
There are no conflicts to declare.
23 G. R. Krishna, R. Devarapalli, G. Lal and C. M. Reddy, J. Am.
Chem. Soc., 2016, 138, 13561.
24 X. Wang, O. S. Wolfbeis and R. J. Meier, Chem. Soc. Rev.,
2013, 42, 7834–7869.
Notes and references
1 (a) A. G. Shtukenberg, Y. O. Punin, A. Gujral and B. Kahr,
Angew. Chem., Int. Ed., 2014, 53, 672; (b) S. Saha and G. R.
Desiraju, J. Am. Chem. Soc., 2017, 139, 1975; (c) M.
Owczarek, K. A. Hujsak, D. P. Ferris, A. Prokofjevs, I. Majerz,
P. Szklarz, H. Zhang, A. A. Sarjeant, C. L. Stern, R. Jakubas,
S. Hong, V. P. Dravid and J. F. Stoddart, Nat. Commun.,
2016, 7, 13108.
2 S. Saha and G. R. Desiraju, Chem. Commun., 2018, 54, 6348.
3 T. Kim, L. Zhu, L. J. Mueller and C. J. Bardeen, J. Am. Chem.
Soc., 2014, 136, 6617.
25 B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E.
Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S.
Lee, D. M. Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu,
S. R. Marder and J. W. Perry, Nature, 1999, 398, 51.
26 (a) L. A. Bagatolli and E. Gratton, Biophys. J., 2000, 78, 290;
(b) M. Ipuy, Y. Y. Liao, E. Jeanneau, P. L. Baldeck, Y.
Bretonniere and C. Andraud, J. Mater. Chem. C, 2016, 4, 766.
27 R. Petermann, M. Tian, S. Tatsuura and M. Furuki, Dyes
Pigm., 2003, 57, 43.
28 J. Wang, C. Wang, Y. Gong, Q. Liao, M. Han, T. Jiang, Q.
Dang, Y. Li, Q. Li and Z. Li, Angew. Chem., Int. Ed., 2018, 57,
16821–16826.
29 T. Bullard, K. L. Wustholz, E. D. Bott, M. Robertson, P. J.
Reid and B. Kahr, Cryst. Growth Des., 2009, 9, 982.
4 T. Kim, M. K. Al-Muhanna, S. D. Al-Suwaidan, R. O. Al-Kaysi
and C. J. Bardeen, Angew. Chem., Int. Ed., 2013, 52, 6889.
5 S. Kobatake, S. Takami, H. Muto, T. Ishikawa and M. Irie,
Nature, 2007, 446, 778.
CrystEngComm
This journal is © The Royal Society of Chemistry 2018