3. Conclusion
Supplementary Material
Keggin-type polyoxometalates (phospho and silicomolybdic
based HPAs) in an amount of 5 mol% have shown to be excellent
acid catalysts for the one-pot synthesis of 3,4-
dihydropyrimidinones in good yields, using an excess of
aldehyde. The theoretical calculations have confirmed the
mechanism of the reaction including the formation of the so
called ‘ureido-crotonate’. Tungsten-based Dawson POMs α-
K6P2W18O62, β-K6P2W18O62 and K6P2W12Mo6O62, in an amount of
5-8 mol% are less acidic and give lower yields than the Keggin-
type POMs.
Experimental procedures and structural characterization of
3,4-dihydropyrimidin-2(1H)-ones 4a-4j.
References and notes
1. Passerini three-component and Ugi four-component condensations are
the most popular among many other reactions for their wide scope and
synthetic utility. For reviews, see: (a) Bienayme, H.; Hulme, C.; Oddon,
G.; Schmitt, P. Chem. Eur. J. 2000, 6, 3321-3329. (b) Domling, A.; Ugi,
I. Angew. Chem., Int. Ed. 2000, 39, 3168-3210. (c) Raman, D. J.; Yus, M.
Angew. Chem., Int. Ed. 2005, 44, 1602-1643.
2. Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360-413.
4. Experimental
3. Aslam, M.; Verma, S. Int. J. ChemTech. Res. 2012, 4, 109-111.
4. Nevagi, R. J.; Narkhede, H. I. Der Pharma Chem., 2014, 6, 135-139.
5. Kumar, P. S.; Idhayadhullal. A.; Abdul-Nasser, A. J.; Selvin, J. J. Serb.
Chem. Soc. 2011; 76, 1-11.
6. Lloyd, J.; Finlay, H. J.; Vacarro, W.; Hyunh, T.; Kover, A.; Bhandaru,
R.; Yan, L.; Atwal, K.; Conder, M. L.; Jenkins-West, T.; Shi, H.; Huang,
C.; Li, D.; Sun, H.; Levesque, P. Bioorg. Med. Chem. Lett. 2010, 20,
1436-1439.
7. (a) Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland,
S.; Hedberg, A.; O’Reilly, B. C. J. Med. Chem. 1991, 34, 806-811. (b)
Grover, G. J.; Dzwomczyk, S.; McMullen, D. M.; Normadinam, C. S.;
Sleph, P. G.; Moreland, S. J. J. Cardiovasc. Pharmacol. 1995, 26, 289-
294. (c) Zorkun, I. S.; Sarac, S.; Celebib, S.; Erolb, K. Bioorg. Med.
Chem. 2006, 14, 8582-8589. (d) Sehon, C. A.; Wang, G. Z.; Viet, A. Q.;
Goodman, K. B.; Dowdell, S. E.; Elkins, P. A.; Semus, S. F.; Evans, C.;
Jolivette, L. J.; Kirkpatrick, R. B.; Dul, E.; Khandekar, S. S.; Yi, T.;
Wright, L. L.; Smith, G. K.; Behm, D. J.; Bentley, R. J. Med. Chem.
2008, 51, 6631-6634. (e) Chikhale, R. V.; Bhole, R. P.; Khedekar, P. B.;
Bhusari, K. P. Eur. J. Med. Chem. 2009, 44, 3645-3653. (f) Alam, O.;
Khan, S. A.; Siddiqui, N.; Ahsan, W.; Verma, S. P.; Gilani, S. J. Eur. J.
Med. Chem. 2010, 45, 5113-5119.
4.1. Materials and Method
Melting points were determined on a Stuart scientific SPM3
apparatus fitted with a microscope and are uncorrected. H and
1
13C NMR spectra were recorded in DMSO-d6 solutions on Bruker
Avance 300 (300.13 MHz for 1H and 75.47 MHz for 13C)
spectrometer. Chemical shifts are reported in ppm (δ) using TMS
as internal reference and coupling constants (J) are given in Hz.
13C assignments were made using NOESY, HSQC, and HMBC
(delays for one bond and long-range JC/H couplings were
optimized for 145 and 7 Hz, respectively) experiments. Mass
spectra are obtained with ESI+. Positive-ion ESI mass spectra
were acquired using a Q-TOF 2 instrument [diluting 1 μL of the
sample chloroform solution (~10-5 M) in 200 μL of 0.1%
trifluoroacetic acid/methanol solution. Nitrogen was used as the
nebulizer gas and argon as the collision gas. The needle voltage
was set at 3000 V, with the ion source at 80°C and desolvation
temperature at 150°C. Cone voltage was 35 V].
8. (a) Silder, D. R.; Larsen, R. D.; Chartrain, M.; Ikemote, N.; Roerber, C.
M.; Taylor, C. S.; Li, W.; Bills, G. F. PCT Int. WO 1999/07695. (b)
Kappe, C. O.; Fabian, W. M. F.; Semones, M. A. Tetrahedron 1997, 53,
2803-2816.
4.2. Synthesis of Polyoxometalates
9. Bruce, M. A.; Pointdexter, G. S.; Johnson, G. PCT Int. Appl. WO
1998/33791.
10. (a) Bose, D. S.; Sudharshan, M.; Chavhan, S. W. Arkivoc 2005, iii, 228-
236. (b) Hajelsiddig, T. T. H.; Saeed, A. E. M. Int. J. Pharm. Sci. Res.
2015, 6, 2191-2196.
Pure
Keggin-type
heteropolyacids
H3PMo12O40,
H4PMo11VO40 and H4SiMo12O40 were prepared according to the
classic methods [47-49]. (NH4)3PMo12O40 was precipitated at pH
<
1
as described by Cavani et al.50 K6P2W18O62 and
11. Russowsky, D.; Lopes, F. A.; da Silva, V. S. S.; Canto, K. F. S.; Montes
D’Oca, M. G.; Godoi, M. N. J. Braz. Chem. Soc. 2004, 15, 165-169.
12. Reddy, Y. T.; Rajitha, B.; Reddy, P. N.; Kumar, B. S.; Rao, V. P. Synth.
Commun. 2004, 34, 3821-3825.
13. Paraskar, A. S.; Dewkar, G. K.; Sudalai, A. Tetrahedron Lett. 2003, 44,
3305-3308.
(NH4)6P2W18O62 Dawson-type heteropoly-salts were synthesized
according to the literature.51 Mixed polyoxometalate
K6P2Mo6W12O62 was obtained from the hexavacant anion
[H2P2W12O56]12- according to the method described by Contant et
al.52
14. Lu, J.; Bai, Y. Synthesis 2002, 466-470.
15. Yadav, J. S.; Reddy, B. V. S.; Srinivas, R.; Venugopal, C.; Ramalingam,
T. Synthesis 2001, 1341-1345.
16. Ma, Y.; Qian, C.; Wang, L.; Yang, M. J. Org. Chem. 2000, 65, 3864-
3868, and references cited therein.
17. Hu, E. H.; Sidler, D. R.; Dolling, U. H. J. Org. Chem. 1998, 63, 3454-
3457.
18. Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000, 65, 6270-6272.
19. Reddy, C. V.; Mahesh, M.; Raju, P. V. V. K.; Babu, T. R.; Reddy, V. V.
N. Tetrahedron Lett. 2002, 43, 2657-2659.
20. Fu, N. Y.; Yuan, Y. F.; Cao, Z.; Wang, S. W.; Wang, J. T.; Peppe, C.
Tetrahedron 2002, 58, 4801-4807.
21. Bose, D. S.; Fatima, L.; Mereyala, H. B. J. Org. Chem. 2003, 68, 587-
590.
22. Carlos, R. D.; Bernardi, D.; Kirsch, G. Tetrahedron Lett. 2007, 48, 5777–
5780.
4.3. General procedure for the synthesis of 3,4-dihydropyrimi-
dinones
In the presence of POM, the reaction of methyl/ethyl
acetoacetate 1 (1 mmol), aldehydes 2 (1 mmol) and urea 3 (1.5
mmol) were carried out in refluxing MeCN (or ethanol) (10 mL)
for 1.5 h. After the reaction was completed, as indicated by TLC
analysis, the solvent was evaporated, the residue was dried and
washed with water and the resulting solid was treated with hot
ethanol and filtered again. The filtrate was concentrated to afford
the recrystallized product. The products were characterized by
1
IR, H and 13C NMR spectral data, mass spectrometry and by
comparison with melting points of the reported compounds.
23. Kappe, C. O.; Kumar, D.; Varma, R. S. Synthesis 1999, 1799-1803.
24. Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Bodaghi-Fard, M. A. Tetrahedron
Lett. 2003, 44, 2889-2891.
Acknowledgments
25. Ighilahriz, K.; Boutmeur, B.; Chami, F.; Rabia, C.; Hamdi, M.; Hamdi,
S. M. Molecules 2008, 13, 779-789.
26. Hedidi, M.; Hamdi, S. M.; Mazari, T.; Boutemeur, B.; Rabia, C.;
Chemat, F.; Hamdi, M. Tetrahedron 2006, 62, 5652-5655.
27. Bentarzi, Y.; Benadji, S.; Bennamane, N.; Rabia, C.; Nedjar-Kolli. Res.
J. Pharm., Biol. Chem. Sci. 2013, 1, 971-979.
28. (a) Okuhara, T.; Mizuno, N.; Misono, M. Adv. Catal. 1996, 41, 113-252.
(b) Kozhevnikov, I. V. Chem. Rev. 1998, 98, 171-198. (c) Misono, M.
Chem. Commun. 2001, 1141-1152.
29. Dennington, R. D.; Keith, T. A.; Millam, J. M. Gaaussian 09W and
GausView 5.0.8. Semichem, 2000–2008.
Thanks are due to University of Aveiro, FCT/MEC for the
financial support to the QOPNA research Unit (FCT
UID/QUI/00062/2013), through national funds and where
applicable co-financed by the FEDER, within the PT2020
Partnership Agreement, and also to the Portuguese NMR
Network. We thank Cristina Barros and Hilário Tavares
(Department of Chemistry, University of Aveiro, 3810-193,
Aveiro, Portugal) for performing the mass and NMR spectra.
30. Debache, A.; Boulcina, R.; Tafer, R.; Belfaitah, A.; Rhouati, S.; Carboni,
B. Chin. J. Chem. 2008, 26, 2112-2116.