M.G. Buonomenna et al. / Journal of Catalysis 238 (2006) 221–231
231
bution. XRD and FTIR analyses showed that the crystalline
structure of PVDF-Ti was unchanged by addition of the cata-
lyst.
[14] I.F.J. Vankelecom, P.A. Jacobs, Catal. Today 56 (2000) 147.
[15] P.E.F. Neys, I.F.J. Vankelecom, R.F. Parton, W. Dehaen, G. L’abbé,
P.A. Jacobs, J. Mol. Catal. 126 (1997) L9.
[16] R.F. Parton, I.F.J. Vankelecom, D. Tas, K.B. Janssen, P.P. Knops-Gerrits,
P.A. Jacobs, J. Mol. Catal. 113 (1996) 283.
The reactivity screening allowed us to: (i) select the PVDF-
Ti catalytic membrane as the best system in terms of conversion
and selectivity, (ii) exclude the occurrence of competing homo-
geneous pathways, and (iii) recycle the catalytic membrane for
five runs without loss of activity. XPS analyses done to explore
the nature of the catalyst embedded in the polymeric matri-
ces confirmed the preservation of the catalyst structure based
on reactivity tests. A very interesting orientation of the Ti(IV)
complex was observed on the PVDF membrane surface, which
is the origin of the higher activity of PVDF-Ti compared with
that of the analogue homogeneous system.
[17] I.F.J. Vankelecom, D. Tas, R.F. Parton, V. Van de Vyver, P.A. Jacobs,
Angew. Chem. Int. Engl. 35 (1996) 1346.
[18] P.P. Knops-Gerrits, I.F.J. Vankelecom, E. Beatse, P.A. Jacobs, Catal. To-
day 32 (1996) 63.
[19] M.C. Carreno, Chem. Rev. 95 (1995) 1717.
[
20] P. Pichen, Asymmetric Synthesis of Sulfoxides: Two Case Studies in Chi-
rality in Industry II, Wiley, New York, 1997, p. 381.
21] F.P. Ballistreri, U. Chiacchio, A. Rescina, G. Tomaselli, R.M. Toscano,
Tetrahedron 48 (1992) 8677.
[
[22] F.P. Ballistreri, R. Bianchini, C. Pinzino, G. Tomaselli, R.M. Toscano,
J. Phys. Chem. A 104 (2000) 2710.
[23] W.A. Nugent, R.L. Harlow, J. Am. Chem. Soc. 116 (1994) 6142.
+
In addition, analyses of the surface acid parameters (γ ) of
[24] F. Di Furia, G. Licini, G. Modena, R. Motterle, W.A. Nugent, J. Org.
Chem. 61 (1996) 5175.
the PVDF-, PEEKWC-, and PAN-based catalytic membranes
provides a supporting argument for the observed differences in
reactivity. PVDF-Ti membranes exhibited the highest value of
[25] G. Licini, M. Bonchio, G. Modena, W.A. Nugent, Pure Appl. Chem. 71
(1999) 463.
+
γ , due to the fluoride atoms of the PVDF. This may favor nu-
[26] M. Forcato, W.A. Nugent, G. Licini, Tetrahedron Lett. 44 (2003) 49.
27] K. Jian, P.N. Pintauro, J. Membr. Sci. 85 (1993) 301.
[
cleophilic attack of the substrate compared with the PEEKWC-
+
[28] R.J. Good, C.J. van Oss, in: M.E. Scrader, G.L. Loeb (Eds.), Modern Ap-
proaches to Wettability, Plenum, New York, 1992.
Ti and PAN-Ti membranes, with lower γ values and higher
−
γ
values, respectively.
[
29] C.J. van Oss, Interfacial Forces in Aqueous Media, Dekker, New York,
994.
30] A. Bottino, G. Camera Roda, G. Capannelli, S. Munari, J. Membr. Sci. 57
1991) 1.
[31] H.K. Lonsdale, J. Membr. Sci. 10 (1982) 81.
1
Acknowledgments
[
(
The authors are grateful to the Italian Ministry of University
and Research for supporting this research through the MIUR-
FIRB RBNE03JCR5 project.
[32] J.H. Kim, B.R. Min, J. Won, H.C. Park, Y. Kang, J. Membr. Sci. 187
(2001) 47.
[
[
[
33] F.M. Gray, Solid Polymer Electrolytes, VCH, New York, 1991.
34] W.M. Prest, D.J. Luca, J. Appl. Phys. 46 (1975) 4136.
35] R. Hasegawa, Y. Takahashi, Y. Chatani, H. Tadokoro, Polymer 3 (1972)
References
6
00.
36] R.D. Lundberg, F.E. Bailey, R.W. Callard, J. Polym. Sci. A 1 (4) (1966)
563.
[
[
[
[
[
[
1] A.T. Bell, Science 299 (2003) 1688.
2] M.A. Barteau, J.E. Lyons, I.K. Song, J. Catal. 216 (2003) 236.
3] J. Corker, Science 271 (1996) 966.
4] V. Vidal, A. Theolier, J. Thivolle-Cazat, J.M. Basset, Science 276 (1997)
9
[
1
37] H.C. Shih, Y.S. Yeh, H. Yasuda, J. Membr. Sci. 50 (1990) 299.
38] A. Bottino, G. Capannelli, O. Monticelli, P. Piaggio, J. Membr. Sci. 166
9.
5] C. Nozkaki, C.G. Lugmair, A. Bell, T.D. Tilley, J. Am. Chem. Soc. 124
2002) 13194.
(2000) 231.
[
[
[
[
[
[
[
[
[
39] D. Lin, C. Chang, F.M. Huang, L.P. Cheng, Polymer 44 (2003) 413.
40] B. Jung, J.K. Yoon, B. Kim, H.W. Rhee, J. Membr. Sci. 243 (2004) 45.
41] Y. Xiuli, C. Hangbin, W. Xiu, Y. Yongxin, J. Membr. Sci. 146 (1998) 179.
42] N. Scharnagal, H. Buschtz, Desalination 139 (2001) 191.
43] S. Yang, Z. Liu, J. Membr. Sci. 222 (2003) 87.
44] E. Drioli, H.C. Zhang, Chimicaoggi 11 (1989) 59.
45] F. Tasselli, J.C. Jansen, E. Drioli, J. Appl. Polym. Sci. 91 (2004) 841.
46] M.G. Buonomenna, A. Figoli, J.C. Jansen, E. Drioli, J. Appl. Polym.
Sci. 92 (2004) 576.
(
[
[
[
[
6] D. Kolb, Surf. Sci. 500 (2002) 722.
7] K.P. De Jong, J.W. Geus, Catal. Rev. Sci. Eng. 42 (2000) 481.
8] D. Fritch, K.-V. Peinemann, Catal. Today 25 (1995) 277.
9] J.F. Ciebien, R.E. Cohen, A. Duran, Supramol. Sci. 5 (1998) 31.
[
10] J. Vital, A.M. Ramos, I.F. Silva, H. Valente, J. E Castanheiro, Catal. To-
day 56 (2000) 167.
11] I.F.J. Vankelecom, N.M.F. Moens, K.A.L. Vercruysse, R.F. Parton, P.A. Ja-
cobs, in: H.U. Blaser, A. Baiker, R. Prins (Eds.), Heterogeneous Catalysis
and Fine Chemicals, IV, Elsevier, Amsterdam, 1997, p. 437.
12] I.F.J. Vankelecom, Chem. Rev. 102 (2002) 3779.
[
[
47] M. Mulder, Basic Principles of Membrane Technology, Kluwer, Dor-
drecht, 1991.
[
[
13] P.E.F. Neys, A. Severeyns, I.F.J. Vankelecom, E. Ceulemans, W. Dehaen,
P.A. Jacobs, J. Mol. Catal. 144 (1999) 373.
[48] C. Della Volpe, S. Siboni, J. Colloid Interface Sci. 195 (1997) 121.
[49] D. Briggs, M.P. Seah, Practical Surface Analysis, Wiley, Chichester, 1983.