In conclusion, we have shown that a pseudo-C3-symmetric tita-
nium triflate (R,M)-5 that displays propeller chirality may be used
to catalyse the asymmetric sulfoxidation of benzyl(phenyl)sulfide
7 with moderate enantioselectivity. To the best of our knowledge,
this represents the first example where the point chirality of a single
stereogenic centre has been used to control propeller chirality
within the same ligand framework of a tripodal metal complex
for asymmetric catalysis.15
Acknowledgements
We thank the EPSRC and GlaxoSmithKline for funding.
Notes and references
1 H. Kawaguchi and T. Matsuo, J. Organomet. Chem., 2004, 689, 4228.
2 G. Licini, M. Mba and C. Zonta, Dalton Trans., 2009, 5265.
3 (a) S. D. Bull, M. G. Davidson, A. L. Johnson, D. E. J. E. Robinson
and M. F. Mahon, Chem. Commun., 2003, 1750; (b) S. D. Bull, M. G.
Davidson, A. L. Johnson, M. F. Mahon and D. E. J. E. Robinson,
Chem.–Asian J., 2010, DOI: 10.1002/asia.200900305.
4 (a) M. Mba, L. J. Prins and G. Licini, Org. Lett., 2007, 9, 21; (b) C.
Zonta, E. Cazzola, M. Mba and G. Licini, Adv. Synth. Catal., 2008,
350, 2503.
5 (a) W. Wang, M. Fujiki and K. Nomura, Macromol. Rapid Commun.,
2004, 25, 504; (b) Y. J. Kim, P. N. Kapoor and J. G. Verkade, Inorg.
Chem., 2002, 41, 4834; (c) C. Redshaw, M. A. Rowan, D. M. Homden,
S. H. Dale, M. R. J. Elsegood, S. Matsui and S. Matsuura, Chem.
Commun., 2006, 3329; (d) A. J. Chmura, M. G. Davidson, C. J. Frankis,
M. D. Jones and M. D. Lunn, Chem. Commun., 2008, 1293; (e) T.
Nagataki and S. Itoh, Chem. Lett., 2007, 36, 748; (f) A. J. Chmura, C. J.
Chuck, M. G. Davidson, M. D. Jones, M. D. Lunn, S. D. Bull and M. F.
Mahon, Angew. Chem., Int. Ed., 2007, 46, 2280; (g) W. Su, Y. Kim, A.
Ellern, I. A. Guzei and J. G. Verkade, J. Am. Chem. Soc., 2006, 128,
13727.
6 P. Axe, S. D. Bull, M. G. Davidson, C. J. Gilfillan, M. D. Jones, D. E. J. E.
Robinson, L. E. Turner and W. L. Mitchell, Org. Lett., 2007, 9, 223.
7 A similar chiral relay approach has been used to control the helical
symmetry of metal complexes derived from neutral tripodal tripyridyl
ligands that have been used as chiral solvating agents for sulfides and
sulfoxides, see: J. W. Canary, C. S. Allen, J. M. Castagnetto and Y.
Wang, J. Am. Chem. Soc., 1995, 117, 8484.
8 S. D. Bull, S. G. Davies, D. J. Fox, A. C. Garner and T. G. R. Sellers,
Pure Appl. Chem., 1998, 70, 1501.
9 Also see: G. Bernardinelli, T. M. Seidel, E. P. Kundig, L. J. Prins, A.
Kolarovic, M. Mba, M. Pontinic and G. Licini, Dalton Trans., 2007,
1573.
10 The configuration of the newly formed stereocentre of the major
enantiomer of sulfoxide (R)-8 was confirmed from the positive sign
of its specific rotation and the order of its elution from a Chiralcel OD-
H column HPLC column. See: J. Legros and C. Bolm, Chem.–Eur. J.,
2005, 11, 1086.
11 J. M. Goodman, A. K. Kohler and S. C. M. Alderton, Tetrahedron
Lett., 1999, 40, 8715.
12 Treatment of titanium triflate (R,M)-5 with two equivalents of racemic
sulfoxide 8 gave 1H NMR and mass spectra that were identical to those
observed for the crude product formed in the ‘stoichiometric’ chiral
sulfoxidation reaction of sulfide 7.
13 Licini and co-workers have shown that the structural integrity of the
amine-tris-(phenolate) ligand framework of titanium complex (rac)-2
was maintained in their sulfoxidation reactions, see ref. 4a.
14 (a) For previous examples of metal complexes where the point chirality
of a chiral ligand has been used to control the atropisomerism of a
second achiral ligand for asymmetric catalysis, see: K. Mikami, K.
Wakabayashi and K. Aikawa, Org. Lett., 2006, 8, 1517; (b) K. Ding,
Chem. Commun., 2008, 909.
Fig. 3 Molecular structure of titanium triflate. (a) View highlighting
the pseudoaxial methyl stereocentre of (R,M)-5 (carbon framework
shown in outline only, and hydrogen atoms except H19 omitted for
◦
˚
clarity). Selected bond lengths (A) and angles ( ): Ti(1)–O(1) 1.786(2),
Ti(1)–O(2) 1.848(2), Ti(1)–O(3) 1.836(2), Ti(1)–O(4) 1.848(2), Ti(1)–N(1)
2.351(2), N(1)–Ti(1)–O(1) 179.51(9), O(3)–Ti(1)–O(2) 116.35(1). (b) View
highlighting the pseudoequatorial methyl stereocentre of (R,P)-6. (c) View
highlighting the propeller-like conformation of (R,M)-5 (triflate ligand
omitted for clarity).
the aryl rings to induce asymmetry into the ‘remote’ coordination
sphere of the titanium centre where the stereoselective oxidation
reactions are occurring.
The diastereoisomeric X-ray crystal structures obtained for the
titanium triflate (Fig. 3) suggest that the moderate enantioselec-
tivities observed in this sulfoxidation reaction may be due to com-
peting formation of interconverting diastereoisomeric (R,M)- and
(R,P)-transition states that could potentially catalyse formation of
the opposing enantiomers of chiral sulfoxide 8. Consequently, we
are currently exploring whether the enantioselectivities of this type
of sulfoxidation reaction can be improved using a chiral titanium
complex derived from a pseudo-C3-symmetric ligand that contains
a more sterically demanding stereogenic (R)-tert-butyl group. We
anticipate that this type of ligand will be more likely to result in
exclusive formation of an (R,M)-transition state that should lead
to formation of (R)-sulfoxide 8 in much higher ee.
15 For a previous example where the point chirality of a chiral auxiliary
fragment was used to control the propeller chirality of a separate
aluminium tris-(phenolate) complex for asymmetric conjugate addition
reactions, see: H. Ito, T. Nagahara, K. Ishihara, S. Saito and H.
Yamamoto, Angew. Chem., Int. Ed., 2004, 43, 994.
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 10169–10171 | 10171
©