J. Am. Chem. Soc. 1998, 120, 2297-2307
2297
Rotaxane or Pseudorotaxane? That Is the Question!†
Peter R. Ashton,‡ Ian Baxter,§ Matthew C. T. Fyfe,‡ Franc¸isco M. Raymo,‡ Neil Spencer,‡
J. Fraser Stoddart,*,‡ Andrew J. P. White,§ and David J. Williams§
Contribution from The School of Chemistry, The UniVersity of Birmingham,
Edgbaston, Birmingham B15 2TT, UK, and The Chemical Crystallography Laboratory, Department of
Chemistry, Imperial College, South Kensington, London SW7 2AY, UK
ReceiVed September 5, 1997
Abstract: A series of secondary dialkylammonium ions (RCH2)2NH2+ have been prepared, and their binding
properties toward the macrocyclic polyether dibenzo[24]crown-8 (DB24C8) evaluated. By using this
information, a route to a kinetically stable rotaxane-like entitysstabilized by noncovalent bonding interactions
between the DB24C8 macroring and the ammonium centerswas established, in which the crown ether slips
over a dialkylammonium ion’s stopper groups (R). However, we have found that the kinetic stability of this
rotaxane-like entity is extremely dependent on the nature of the solvent in which it is dissolved, suggesting
that pseudorotaxanes lie in the fuzzy domain between two sets of extremes, wherein a beadlike macrocycle
and a dumbbell-like component may either (1) exist as a rotaxane or (2) be completely disassociated from one
another.
Introduction
energy for “dumbbell”-extrusion is too high to be overcome at
ambient temperature. During the past 5 years, we have
developed a novel synthetic strategysnamely, slippage6,7sfor
the construction of rotaxane-like assemblies (Figure 1) that relies
upon (1) the size complementarity between the macrocycle and
the “dumbbell’s” stoppers, in addition to (2) stabilizing nonco-
valent bonding interactions between the macrocycle and the
“dumbbell’s” rod. In this strategy, the macrocycle M and the
“dumbbell” D are synthesized separately, before being heated
together in solution so that the free energy of activation (i.e.,
∆Gqon) for the slippage of M over D’s stoppers can be over-
come. The noncovalent bonding interactions present in the
rotaxane-like structure R make it more stable than its precursors,
viz., M and D, by ∆G°si.e., the free energy of complexationsso
that the free energy of activation for its dissociation (i.e.,
∆Gqoff) becomes insurmountable when the solution is cooled to
ambient temperature. To date,6 we have utilized the supramo-
lecular assistance to synthesis8 provided by, inter alia, aryl-
aryl stacking interactions between π-electron deficient bipyri-
dinium-based “dumbbells” (or macrocycles) and π-electron rich
The quest for nanoscopic device-like systems, based upon
molecular components,1 has led to the rapid growth of a new
field of chemical synthesis involving the production of inter-
locked molecules2 such as rotaxanes.3,4 In these molecular
assemblies,5 a beadlike component (i.e., a macrocycle) is bound
mechanically to a dumbbell-like species so that the activation
* To whom correspondence should be addressed. Current address:
Department of Chemistry and Biochemistry, University of California, Los
Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095.
† Molecular Meccano, Part 33. For Part 32, see: Amabilino, D. B.;
Ashton, P. R.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Chem. Eur.
J. In press.
‡ University of Birmingham.
§ Imperial College.
(1) (a) de Silva, A. P.; McCoy, C. P. Chem. Ind. (London) 1994, 992-
996. (b) Drexler, K. E. Annu. ReV. Biophys. Biomol. Struct. 1994, 23, 377-
405. (c) Whitesides, G. M. Sci. Am. 1995, 273 (3), 114-117. (d) Ashton,
P. R.; Ballardini, R.; Balzani, V.; Boyd, S. E.; Credi, A.; Gandolfi, M. T.;
Go´mez-Lo´pez, M.; Iqbal, S.; Philp, D.; Preece, J. A.; Prodi, L.; Ricketts,
H. G.; Stoddart, J. F.; Tolley, M. S.; Venturi, M.; White, A. J. P.; Williams,
D. J. Chem. Eur. J. 1997, 3, 152-170 and references therein.
(2) (a) Chambron, J. C.; Dietrich-Buchecker, C. O.; Sauvage, J.-P. Top.
Curr. Chem. 1993, 165, 131-162. (b) Amabilino, D. B.; Stoddart, J. F.
Chem. ReV. 1995, 95, 2725-2828. (c) Ja¨ger, R.; Vo¨gtle, F. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 930-944.
(3) For examples of rotaxane-based device-like systems, see: (a) Bissell,
R. A.; Co´rdova, E.; Kaifer, A. E.; Stoddart, J. F. Nature (London) 1994,
369, 133-137. (b) Anelli, P.-L.; Asakawa, M.; Ashton, P. R.; Bissell, R.
A.; Clavier, G.; Go´rski, R.; Kaifer, A. E.; Langford, S. J.; Mattersteig, G.;
Menzer, S.; Philp, D.; Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Tolley,
M. S.; Williams, D. J. Chem. Eur. J. 1997, 3, 1113-1135. (c) Mart´ınez-
D´ıaz, M.-V.; Spencer, N.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1997,
36, 1904-1907. (d) Murakami, H.; Kawabuchi, A.; Kotoo, K.; Kunitake,
M.; Nakashima, N. J. Am. Chem. Soc. 1997, 119, 7605-7606.
(4) For some recent examples of rotaxanes from other research groups,
see: (a) Li, Z.-T.; Stein, P. C.; Becher, J.; Jensen, D.; Mørk, P.; Svenstrup,
N. Chem. Eur. J. 1996, 2, 624-633. (b) Solladie´, N.; Chambron, J.-C.;
Dietrich-Buchecker, C. O.; Sauvage, J.-P. Angew. Chem., Int. Ed. Engl.
1996, 35, 906-909. (c) Vo¨gtle, F.; Du¨nnwald, T.; Ha¨ndel, M.; Ja¨ger, R.;
Meier, S.; Harder, G. Chem. Eur. J. 1996, 2, 640-643. (d) Anderson, S.;
Anderson, H. L. Angew. Chem., Int. Ed. Engl. 1996, 35, 1956-1959. (e)
Hannak, R. B.; Farber, G.; Konrat, R.; Krautler, B. J. Am. Chem. Soc. 1997,
119, 2313-2314. (f) Leigh, D. A.; Murphy, A.; Smart, J. P.; Slawin, A.
M. Z. Angew. Chem., Int. Ed. Engl. 1997, 36, 728-732.
(5) Schill, G. Catenanes, Rotaxanes, and Knots; Academic Press: New
York, 1971.
(6) (a) Ashton, P. R.; Belohradsky, M.; Philp, D.; Stoddart, J. F. J. Chem.
Soc., Chem. Commun. 1993, 1269-1274. (b) Ashton, P. R.; Belohradsky,
M.; Philp, D.; Spencer, N.; Stoddart, J. F. J. Chem. Soc., Chem. Commun.
1993, 1274-1277. (c) Amabilino, D. B.; Ashton, P. R.; Belohradsky, M.;
Raymo, F. M.; Stoddart, J. F. J. Chem. Soc., Chem. Commun. 1995, 747-
750. (d) Amabilino, D. B.; Ashton, P. R.; Belohradsky, M.; Raymo, F. M.;
Stoddart, J. F. J. Chem. Soc., Chem. Commun. 1995, 751-753. (e) Asakawa,
M.; Ashton, P. R.; Iqbal, S.; Stoddart, J. F.; Tinker, N. D.; White, A. J. P.;
Williams, D. J. Chem. Commun. 1996, 483-486. (f) Ashton, P. R.;
Ballardini, R.; Balzani, V.; Belohradsky, M.; Gandolfi, M. T.; Philp, D.;
Prodi, L.; Raymo, F. M.; Reddington, M. V.; Spencer, N.; Stoddart, J. F.;
Venturi, M.; Williams, D. J. J. Am. Chem. Soc. 1996, 118, 4931-4951. (g)
Asakawa, M.; Ashton, P. R.; Ballardini, R.; Balzani, V.; Belohradsky, M.;
Gandolfi, M. T.; Kocian, O.; Prodi, L.; Raymo, F. M.; Stoddart, J. F.;
Venturi, M. J. Am. Chem. Soc. 1997, 119, 302-310. (h) Ashton, P. R.;
Everitt, S. R. L.; Go´mez-Lo´pez, M.; Jayaraman, N.; Stoddart, J. F.
Tetrahedron Lett. 1997, 38, 5691-5694. (i) Raymo, F. M.; Stoddart, J. F.
Pure Appl. Chem. 1997, 69, 1987-1997.
S0002-7863(97)03127-2 CCC: $15.00 © 1998 American Chemical Society
Published on Web 03/03/1998