Paper
Catalysis Science & Technology
being loaded onto the shaker apparatus. The reaction mix-
tures were heated to 80 °C and allowed to shake vigorously.
At the desired time point, the reaction mixtures were allowed
to cool to room temperature, removed from the parallel reac-
tor and concentrated to oil. The mixtures were analyzed by
1H NMR spectroscopy using CDCl3 containing phenyltri-
methylsilane as the internal standard.
3 (a) H. Y. Thu, W. Y. Yu and C. M. Che, J. Am. Chem. Soc.,
2006, 128, 9048; (b) S. W. Youn, J. H. Bihn and B. S. Kim,
Org. Lett., 2011, 13, 3738.
4 (a) T. S. Mei, X. S. Wang and J. Q. Yu, J. Am. Chem. Soc.,
2009, 131, 10806; (b) K. Sun, Y. Li, T. Xiong, J. P. Zhang and
Q. A. Zhang, J. Am. Chem. Soc., 2011, 133, 1694; (c) B. Xiao,
T. J. Gong, J. Xu, Z. J. Liu and L. Liu, J. Am. Chem. Soc., 2011,
133, 1466; (d) G. B. Boursalian, M. Y. Ngai, K. N. Hojczyk and
T. Ritter, J. Am. Chem. Soc., 2013, 135, 13278.
5 For examples of palladium-catalyzed aryl C–H amination
that are less likely to involve high-valent palladium interme-
diates, but are likely to involve heterobimetallic species
based on the requirement of stoichiometric silver or copper
oxidants, see: (a) K. Inamoto, T. Saito, M. Katsuno,
T. Sakamoto and K. Hiroya, Org. Lett., 2007, 9, 2931; (b)
E. J. Yoo, S. Ma, T. S. Mei, K. S. L. Chan and J. Q. Yu, J. Am.
Chem. Soc., 2011, 133, 7652; (c) M. Wasa and J. Q. Yu, J. Am.
Chem. Soc., 2008, 130, 14058.
6 For leading references, see: (a) A. J. Canty, M. C. Denney,
B. W. Skelton and A. H. White, Organometallics, 2004, 23,
1122; (b) A. R. Dick, J. W. Kampf and M. S. Sanford, J. Am.
Chem. Soc., 2005, 127, 12790; (c) N. R. Deprez and
M. S. Sanford, Inorg. Chem., 2007, 46, 1924; (d) D. C. Powers
and T. Ritter, Nat. Chem., 2009, 1, 302; (e) N. R. Deprez and
M. S. Sanford, J. Am. Chem. Soc., 2009, 131, 11234; ( f )
K. Muñiz, Angew. Chem., Int. Ed., 2009, 48, 9412; (g)
D. C. Powers, E. Lee, A. Ariafard, M. S. Sanford, B. F. Yates,
A. J. Canty and T. Ritter, J. Am. Chem. Soc., 2012, 134, 12002;
(h) D. C. Powers and T. Ritter, Acc. Chem. Res., 2012, 45, 840;
(i) A. J. Hickman and M. S. Sanford, Nature, 2012, 484, 177.
7 For two examples of aryl C–H amination that use
PdII/Pd0 catalysis, see: (a) W. C. P. Tsang, N. Zheng and
S. L. Buchwald, J. Am. Chem. Soc., 2005, 127, 14560; (b)
W. C. P. Tsang, R. H. Munday, G. Brasche, N. Zheng and
S. L. Buchwald, J. Org. Chem., 2008, 73, 7603; (c) Y. C. Tan
and J. F. Hartwig, J. Am. Chem. Soc., 2010, 132, 3676.
8 For an example of aryl C–H amination that may involve
nitrene insertion into a Pd–aryl bond, see: (a) K. H. Ng,
A. S. C. Chan and W. Y. Yu, J. Am. Chem. Soc., 2010, 132, 12862;
(b) A. R. Dick, M. S. Remy, J. W. Kampf and M. S. Sanford,
Organometallics, 2007, 26, 1365.
9 For reviews of Pd-catalyzed aerobic oxidation reactions, see:
(a) S. S. Stahl, Angew. Chem., Int. Ed., 2004, 43, 3400; (b)
K. M. Gligorich and M. S. Sigman, Chem. Commun., 2009,
3854; (c) Z. Z. Shi, C. Zhang, C. H. Tang and N. Jiao, Chem.
Soc. Rev., 2012, 41, 3381; (d) A. N. Campbell and S. S. Stahl,
Acc. Chem. Res., 2012, 45, 851.
10 To our knowledge, the only examples of aerobic Pd-catalyzed
aryl C–H amination reactions are those described in ref. 7a, b.
11 For studies describing the use of O2 in Pd-catalyzed C–H
oxidation reactions believed to proceed via high-valent
(i.e., PdIII or PdIV) intermediates, see the following: (a)
Y. H. Zhang and J. Q. Yu, J. Am. Chem. Soc., 2009, 131,
14654; (b) K. J. Stowers, A. Kubota and M. S. Sanford, Chem.
Sci., 2012, 3, 3192; (c) J. Zhang, E. Khaskin, N. P. Anderson,
P. Y. Zavalij and A. N. Vedernikov, Chem. Commun., 2008,
General procedure for reactions employing peroxide additives
A 6 ml vial was charged with N-benzenesulfonyl-2-
aminobiphenyl(15.5mg,0.05mmol).Stocksolutionsofperoxide
additive (t-butylhydroperoxide or t-butylperoxybenzoate)
in toluene were prepared such that the correct quantity
(1.1 equiv.) could be added via syringe. Separate stock solu-
tions of Pd(OAc)2 and ligand were prepared such that the cor-
rect quantity of each (0.01 equiv.) could be delivered and the
total volume would reach 0.5 ml (0.1 M). The vial was sealed
with a Teflon cap and loaded into a heating block on a shaker
table, allowing for orbital shaking. The reaction mixture was
heated to 80 °C and allowed to shake vigorously. At the desired
time point, the reaction mixture was allowed to cool to room
temperature and concentrated to oil. The mixture was analyzed
by 1H NMR spectroscopy using CDCl3 containing with phenyl-
trimethylsilane as the internal standard.
Acknowledgements
We thank the NIH (R01 GM67173) for financial support of
this work. Spectroscopic instrumentation was partially funded
by the NSF (CHE-1048642, CHE-0342998, CHE-9208463).
References
1 (a) A. S. Guram and S. L. Buchwald, J. Am. Chem. Soc., 1994,
116, 7901; (b) F. Paul, J. Patt and J. F. Hartwig, J. Am. Chem.
Soc., 1994, 116, 5969; (c) J. F. Hartwig, Angew. Chem., Int.
Ed., 1998, 37, 2047; (d) D. S. Surry and S. L. Buchwald,
Angew. Chem., Int. Ed., 2008, 47, 6338; (e) J. F. Hartwig, Acc.
Chem. Res., 2008, 41, 1534; ( f ) S. V. Ley and A. W. Thomas,
Angew. Chem., Int. Ed., 2003, 42, 5400; (g) I. P. Beletskaya
and A. V. Cheprakov, Coord. Chem. Rev., 2004, 248, 2337; (h)
F. Monnier and M. Taillefer, Angew. Chem., Int. Ed., 2009,
48, 6954; (i) D. S. Surry and S. L. Buchwald, Chem. Sci., 2010,
1, 13.
2 (a) J. A. Jordan-Hore, C. C. C. Johansson, M. Gulias,
E. M. Beck and M. J. Gaunt, J. Am. Chem. Soc., 2008, 130,
16184; (b) G. He, Y. S. Zhao, S. Y. Zhang, C. X. Lu and
G. Chen, J. Am. Chem. Soc., 2012, 134, 3; (c) G. He, C. X. Lu,
Y. S. Zhao, W. A. Nack and G. Chen, Org. Lett., 2012, 14,
2944; (d) E. T. Nadres and O. Daugulis, J. Am. Chem. Soc.,
2012, 134, 7; (e) T. S. Mei, D. Leow, H. Xiao, B. N. Laforteza
and J. Q. Yu, Org. Lett., 2013, 15, 3058; ( f ) R. Shrestha,
P. Mukherjee, Y. C. Tan, Z. C. Litman and J. F. Hartwig,
J. Am. Chem. Soc., 2013, 135, 8480.
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2014