References
[1] G.D. O’Connor, B. Chan, J.A. Sanelli, K.M. Cergol, V. Dryza, R.J. Payne, E.J. Bieske, L. Radom, T.W.
Schmidt, Hydrogen-adduction to open-shell graphene fragments: spectroscopy, thermochemistry and
astrochemistry, Chem. Sci. 8 (2017) 1186.
[2] P.B. Sogo, M. Nakazaki, M. Calvin, Free radical from perinaphthene, J. Chem. Phys., 26 (1957) 1343.
[3] R. Biehl, Ch. Hass, H. Kurreck, W. Lubitz, S. Oestreich, Esr and endor studies of partially deuterated and
chlorinated phenalenyls : New synthetic pathways, Tetrahedron, 34 (1978) 419.
[4] W.P. Cofino, S.M. van Dam, D.A. Kamminga, G.Ph. Hoornweg, C. Gooijer, C. MacLean, N.H. Velthorst,
Jahn-Teller effect in highly resolved optical spectra of the phenalenyl radical, Mol. Phys. 51 (1984) 537.
[5] G.D. O’Connor, T.P. Troy, D.A. Roberts, N. Chalyavi, B. Fückel, M.J. Crossley, K. Nauta, J.F. Stanton,
T.W. Schmidt, Spectroscopy of the Free Phenalenyl Radical, J. Am. Chem. Soc. 133 (2011) 14554.
[6] R. Pettit, The synthesis and properties of the perinapthenylium cation, J. Am. Chem. Soc. 82 (1960) 1972.
[7] D.H. Reid, Stable π-electron systems and new aromatic structures, tetrahedron, 3 (1958) 339.
[8] P. Lazzeretti, Assessment of Aromaticity via Molecular Response Properties, Phys. Chem. Chem. Phys. 6
(2004) 217.
[9] M.K. Cyrański, R.W.A. Havenith, M.A. Dobrowolski, B.R. Gray, T.M. Krygowski, P.W. Fowler, L.W.
Jenneskens, The phenalenyl motif – A magnetic chameleon, Chem. Eur. J., 13 (2007) 2201.
[10] G. Lock, G. Gergely, Über Perinaphthinden, Ber. Deutch. Chem. Ges. 77 (1944) 461.
[11] J.M. Zoellner, R.W. Zoellner, The isomers of phenalene and their singlet and triplet states: A Hartree–Fock
and density functional computational investigation, J. Mol. Struct. THEOCHEM 863 (2008) 50.
[12] E. Habart, F. Boulanger, L. Verstraete, G. Pineau des Forêts, E. Falgarone, A. Abergel, H2 infrared line
emission across the bright side of the ρ Ophiuchi main cloud, Astron. Astrophys. 397 (2003) 623.
[13] E. Habart, F. Boulanger, L. Verstraete, C.M. Walmsley, G. Pineau des Forêts, Some empirical estimates of
the H2 formation rate in photon-dominated regions, Astron. Astrophys. 414 (2004) 531.
[14] Le Page, T. P. Snow, V. Bierbaum, Molecular hydrogen formation catalyzed by polycyclic aromatic
hydrocarbons in the interstellar medium, Astrophys. J., 704 (2009) 274.
[15] A.L. Skov, J.D. Thrower, L. L. Hornekær, Polycyclic Aromatic Hydrocarbons – Catalysts for Molecular
Hydrogen Formation, Faraday Discuss., 168 (2014) 223.
[16] E. Rauls, L. Hornekær, Catalyzed routes to molecular hydrogen formation and hydrogen addition reactions
on neutral polycyclic aromatic hydrocarbons under interstellar conditions, Astrophys. J. 679 (2008) 531.
[17] M. Bonfanti, S. Casolo, G.F. Tantardini, R. Martinazzo, Surface models and reaction barrier in Eley–Rideal
formation of H2 on graphitic surfaces, Phys. Chem. Chem. Phys. 13 (2011) 16680.
[18] C. Barrales-Martínez, D. Cortés-Arriagada, S. Gutiérrez-Oliva, Molecular hydrogen formation in the
interstellar medium: the role of polycyclic aromatic hydrocarbons analysed by the reaction force and activation
strain model, Monthly Notices Roy. Astron. Soc. 481 (2018) 3052.
[19] S. Cazaux, A.G.G.M. Tielens, H2 formation on grain surfaces, Astrophys. J. 604 (2004) 222.
[20] T. P. M. Gourmans, J. Kästner, Hydrogen-atom tunneling could contribute to H2 formation to space,
Angew. Chem. Int Ed., 49 (2010) 7350.
[21] T.P.M. Goumans, Hydrogen chemisrption on polycyclic aromatic hydrocarbons via tunneling, Monthly
Notices Roy. Astron. Soc. 415 (2011) 3129.
[22] V. Menella, L. Hornekær, J. Thrower, M. Accolla, The catalytic role of coronene for molecular hydrogen
formation, Astrophys. J. Lett. 745 (212) L2.
[23] C. Barrales-Martínez, S. Gutiérrez-Oliva, The effect of heteroatoms in carbonaceous surfaces:
computational analysis of H chemisorption on to a PANH and Si-doped PAH, Monthly Notices Roy. Astron.
Soc. 490 (2019) 172.
[24] R. Pan, L.M Raff, Classical variational transition state theory study of hydrogen atom diffusion dynamics in
imperfect xeenon matrices, J. Phys. Chem. A, 101 (1997) 235.
[25] L. Khriachtchev, H. Tanskanen, M. Pettersson, M. Räsänen, V. Feldman, F. Sukhov, A. Orlov, A.F.
Shestakov, Isotopic effect on thermal mobility of atomic hydrogen in solid xenon, J. Chem. Phys. 116 (2002)
5708.
[26] V. Boekelheide, C. E. Larrabee, An investigation of the preparation and some properties of perinaphthene, J.
Am. Chem. Soc. 72 (1950) 1245.
[27] C.Y. Peng, P.Y. Ayala, H.B. Schlegel, M.J. Frisch, Using redundant internal coordinates to optimize
equilibrium geometries and transition states, J. Comp. Chem. 17 (1996) 49.
[28] C.Y. Peng, H.B. Schlegel, Combining synchronous transit and quasi-Newton methods for finding transition
states, Israel J. Chem., 33 (1993) 449.
[29] M.J. Frisch, et al., Gaussian 09 D.01, Gaussian, Inc., Wallingford CT, 2009.
17