SCHEME 1. Synthesis of Furanoside Aldehydes 3a
intramolecular nitrone cycloadditions.7 Dipolar cycloadditions
of nitrones7,8 to alkenes have received much synthetic interest7g-l
because the newly generated ring systems are highly amenable
to further transformations leading to versatile intermediates.
Also, sugar-based chiral cyclic ethers constitute the framework
of a large number of naturally occurring biologically active
compounds such as ciguatoxin,9 other marine toxins,10 zoapa-
tanol,11 sepholenol,12 laurencin,13 etc. The high importance of
these systems resulted in the development of number of synthetic
methods,14 including nitrone cycloaddition.7
To our knowledge, stereoselective intramolecular nitrone
cycloaddition in aqueous media has not been reported, and so,
in continuation of our effort, we herein describe the stereose-
lective synthesis of chiral oxepanes and pyrans by 3-O-allyl
carbohydrate nitrone cycloaddition starting from D-glucose. The
requisite furanoside-5-aldehydes (3) were prepared from the
corresponding 1,2:5,6-diisopropylidene-3-O-allyl furanosides (1)
via a standard sequence of reactions7g (Scheme 1) and were
a Reagents and conditions: (i) 75% aq CH3COOH, rt, 15 h; (ii) NaIO4,
MeOH, H2O, 3 h, 0 °C to rt.
TABLE 1. Effect of Surfactant on Intramolecular Nitrone
Cycloaddition in Water
(7) (a) Shing, T. K. M.; Elsley, D. A.; Gillhouley, J. G. J. Chem. Soc.,
Chem. Commun. 1989, 1280-1282. (b) Collins, P. M.; Ashwood, M. S.;
Eder, H. Tetrahedron Lett. 1990, 31, 2055-2058. (c) Bhattacharjya, A.;
Chattopadhyay, P.; McPhail, A. P.; McPhail, D. R. J. Chem. Soc., Chem.
Commun. 1990, 6, 1508. (d) Shing, T. K. M.; Fung, W.-C.; Wong, C.-H.
J. Chem. Soc., Chem. Commun. 1994, 4, 449-450. (e) Sharma, G. V. M.;
Reddy, K. R.; Sankar, A. R.; Kunwar, A. C. Tetrahedron Lett. 2001, 42,
8893-8896. (f) Shing, T. K. M.; Zhong, Y.-L. Tetrahedron 2001, 57, 1573-
1579. (g) Bhattacharjee, A.; Datta, S.; Chattopadhyay, P.; Ghoshal, N.;
Kundu, A. P.; Pal, A.; Mukhopadhyay, R.; Chowdhury, S.; Bhattacharjya,
A.; Patra, A. Tetrahedron 2003, 59, 4623-4639. (h) Shing, T. K. M.; Zhong,
Y.-L.; Mak, T. C. W.; Wang, R.; Xue, F. J. Org. Chem. 1998, 63, 414-
415. (i) Pal, A.; Bhattacharjya, A.; Mukhopadhyay, R. Tetrahedron Lett.
2000, 41, 10135-10139. (j) Majumdar, S.; Bhattacharjya, A.; Patra, A.
Tetrahedron 1999, 55, 12157-12174. (k) Osborn, H. M. I.; Gemmell, N.;
Harwood, L. M. J. Chem. Soc., Perkin Trans. 1 2002, 2419-2438. (l) Patra,
R.; Bar, N. C.; Roy, A.; Achari, B.; Ghoshal, N.; Mandal, S. B. Tetrahedron
1996, 52, 11265-11272. (m) Bar, N. C.; Roy, A.; Achari, B.; Mandal, S.
B. J. Org. Chem. 1997, 62, 8948-8951. (n) Singha, K.; Roy, A.; Dutta, P.
K.; Tripathi, S.; Sahabuddin, S.; Achari, B.; Mandal, S. B. J. Org. Chem.
2004, 69, 6507-6510. (o) Sharma, G. V. M.; Begum, A.; Reddy, K. R.;
Sankar, A. R.; Kunwar, A. C. Tetrahedron: Asymmetry 2003, 14, 3899-
3905.
(8) (a) Little, R. D. Selectivity, Strategy & Efficiency in Modern Organic
Chemistry. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon Press: Oxford, 1999; Vol. 5, pp 247-260. (b) Adams,
J. P. J. Chem. Soc., Perkin Trans. 1 2002, 2586-2597. (c) Brandi, A.;
Cicchi, S.; Cordero, F. M.; Goti, A. Chem. ReV. 2003, 103, 1213-1269.
(d) Gothelf, K. V.; Jorgensen, K. A. Chem. ReV. 1998, 98, 863-910. (e)
Adams, J. P.; Box, D. S. J. Chem. Soc., Perkin Trans. 1 1999, 749-764.
(f) Gholami, M. R.; Yangjeh, A. H. J. Chem. Res., Synop. 1999, 226-227.
(g) Karlsson, S.; Hogberg, H.-E. Org. Prep. Proced. Int. 2001, 33, 103-
172. (h) Gothelf, K. V.; Jørgensen, K. A. Chem. Commun. 2000, 1449-
1458. (i) Kanemasa, S. Synlett 2002, 1371-1387. (j) Rastelli, A.; Gandolfi,
R.; Sarzi-Amade, M.; Carboni, B. J. Org. Chem. 2001, 66, 2449-2458.
(k) Tamura, O.; Mita, N.; Okabe, T.; Yamaguchi, T.; Fukushima, C.;
Yamashita, M.; Morita, Y.; Morita, N.; Ishibashi, H.; Sakamoto, M. J. Org.
Chem. 2001, 66, 2602-2610. (l) Denmark, S. E.; Gomez, L. Org. Lett.
2001, 3, 2907-2910.
(9) Scheuer, P. J.; Takahashi, W.; Tsutsumi, J.; Yoshida, T. Science 1967,
155, 1267-1268.
(10) Murata, M.; Legrand, A. M.; Yasumoto, T. Tetrahedron Lett. 1989,
30, 3793-3796.
(11) (a) Yasumoto, T.; Murata, M. Chem. ReV. 1993, 93, 1897-1909.
(b) Levine, S. D.; Adams, R. E.; Chem, R.; Cotter, M. L.; Hirsch, A.-F.;
Kane, V. V.; Kanojia, R. M.; Shaw, C.; Wachter, M. P.; Chin, E.;
Huettermann, R.; Ostrowski, P.; Mateos, J. L.; Noriega, L.; Guzmann, A.;
Mijazez, A.; Tavor, L. J. Am. Chem. Soc. 1979, 101, 3404-3405.
(12) Shmueli, U.; Carmely, S.; Groweiss, A.; Kashman, Y. Tetrahedron
Lett. 1981, 22, 709-712.
(13) Irie, T.; Suzuki, M.; Masamune, T. Tetrahedron 1968, 24, 4193-
4205.
(14) (a) Alvarez, E.; Candenas, M.-L.; Perez, R.; Ravelo, J. L.; Martin,
J. D. Chem. ReV. 1995, 95, 1953-1980. (b) Nicolaou, K. C. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 589-607. (c) Mori, Y. Chem. Eur. J. 1997, 3,
849-852. (d) Hoberg, J. O. Tetrahedron 1998, 54, 12631-12670.
time yield
time yield
entry surfactant (h)
(%)
entry
surfactant
(h)
(%)
1
2
3
4
48
8
8
5
6
7
8
Triton X-100 30
80
80
61
79
CTAB
SDS
SDBS
79
75
75
Tween-20
DBSA
Triton CF 10
30
16
36
8
sufficiently pure to be used directly in the next step. The
corresponding nitrones, formed in aqueous media catalyzed by
surfactant using phenyl hydroxylamine with the respective
aldehyde at room temperature, underwent stereoselective in-
tramolecular cycloaddition (Scheme 2). By carrying out the
model reaction shown in Table 1, it was found that the type of
surfactant used influenced both the yield and the reaction time.
Nonionic surfactants (entries 5, 6, and 8) were effective but
required longer reaction time, an acidic surfactant (entry 7)
reduced the yield, and anionic surfactants (entries 3 and 4) were
slightly less effective than a cationic surfactant (entry 2). From
these observations we concluded that CTAB is the most efficient
surfactant for this reaction. When performing these reactions
in water without surfactant, we recovered starting materials as
reported earlier.2d No reaction was obtained under neat condi-
tion. We conclude that surfactants have a prominent role in
nitrone formation and the subsequent cycloaddition in aqueous
medium by the formation of an organized media. Similar
reactions when performed in organic solvents, which require
maintaining dry, refluxing condition in most cases, gave a
mixture of pyrans and oxepane isomers.7a-j Often these cy-
cloadditions lead to the formation of nonseparable mixture of
isomers.7a-j
The role of solvent on the ring size selectivity was studied
by Mandal et al.,7k-m who noted changes from five to six
members when the solvent was changed from aprotic to protic
for the substrate with a hydroxyl group at C-3 position. Indeed,
this hydroxyl group has a profound influence over the course
of cyclization, but they still obtained a mixture of products upon
cyclization. However, in our case, there is no free hydroxyl
group present anywhere. The most attractive observation in these
surfactant-mediated intramolecular nitrone cycloaddition reac-
tions of sugar in aqueous media is the formation of a single
isomer out of the four possible isomers (Table 2). The nitrones
of 3-O-allyl glucofuranose and the corresponding allose deriva-
346 J. Org. Chem., Vol. 71, No. 1, 2006