ACS Medicinal Chemistry Letters
Page 6 of 7
(5) Maher, M.P.; Matta, J.A.; Gu, S.; Seierstad, M.; Bredt, D.S.
Getting a handle on neuropharmacology by targeting receptor-
AUTHOR INFORMATION
1
2
3
4
5
6
7
associated proteins. Neuron, 2017, 96, 989-998.
Corresponding Author
(6) Kato, A.S.; Burris, K.D.; Gardinier, K.M.; Gernert, D.L.;
Porter, W.J.; Reel, J.; Ding, C.; Tu, Y.; Schober, D.A.; Lee, M.R.,
et al. Forebrain-selective AMPA-receptor antagonism guided by
TARP γ-8 as an antiepileptic mechanism. Nat. Med., 2016, 22,
1496-1501.
Present Address
† Sanford Burnham Prebys Medical Discovery Institute, 10901 N.
Torrey Pines Rd., La Jolla, CA 92037 United States
8
9
Author Contributions
(7) Small, S.A.; Schobel, S.A.; Buxton, R.B.; Witter, M.P.;
Barnes, C.A. A pathophysiological framework of hippocampal
dysfunction in ageing and disease. Nat. Rev. Neurosci., 2011, 12,
585-601.
All authors have given approval to the final version of the
manuscript.
Notes
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
The authors declare no competing financial interest.
(8) Hibi, S.; Ueno, K.; Nagato, S.; Kawano, K.; Ito, K.; Norimine,
Y.; Takenaka, O.; Hanada, T.; Yonaga, M. Discovery of 2-(2-oxo-
1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile
(perampanel): a novel, noncompetitive α-amino-3-hydroxy-5-
methyl-4-isoxazolepropanoic acid (AMPA) receptor antagonist. J.
Med. Chem., 2012, 55, 10584-10600.
ACKNOWLEDGMENT
The authors wish to thank Moravek, Inc. (Brea, CA) for the
synthesis of [3H]12, NovAliX (Strasbourg, France) and WuXi
AppTec (Shanghai, China) for the resynthesis of compounds 3
and 8, and BioBlocks, Inc. (San Diego, CA) for the resynthesis of
compound 20.
(9) Greenwood, J.; Valdes, J. Perampanel (Fycompa) a review of
clinical efficacy and safety in epilepsy. P T, 2016, 41(11), 683-
688.
ABBREVIATIONS
AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid;
TARP, transmembrane AMPA receptor regulatory protein; CNS,
central nervous system; FDA, Food and Drug Administration; LE,
ligand efficiency; LLE, ligand-lipophilicity efficiency; ADME,
absorption, distribution, metabolism, excretion; DMPK, drug
metabolism and pharmacokinetics; SAR, structure-activity
relationship; CYP, cytochrome P450; MW, molecular weight;
FLIPR, fluorescence imaging plate reader; p.o., per os; i.v.,
intravenous; PK, pharmacokinetics; CL, clearance; Vss, volume of
(10) Chen, L.; Chetkovich, D.M.; Petralia, R.S.; Sweeney, N.T.;
Kawasaki, Y.; Wenthold, R.J.; Bredt, D.S.; Nicoll, R.A. Stargazin
regulates synaptic targeting of AMPA receptors by two distinct
mechanisms. Nature, 2000, 408, 936-943.
(11) Gardinier, K.M.; Gernert, D.L.; Porter, W.J.; Reel, J.K.;
Ornstein, P.L.; Spinazze, P.; Stevens, F.C.; Hahn, P.; Hollinshead,
S.P.; Mayhugh, D., et al. Discovery of the first α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor
antagonist dependent upon transmembrane AMPA receptor
regulatory protein (TARP) γ-8. J. Med. Chem., 2016, 59, 4753-
4768.
distribution at steady state; t1/2
, half-life; Cmax, maximum
concentration; F, bioavailability; RLM, rat liver microsome;
HLM, human liver microsome; PPB, plasma protein binding; fub,
fraction unbound; MDR1, multi-drug resistance gene; MDCK-
MDR1, Madin Darby canine kidney cell line transfected with
MDR1; SGF, simulated gastric fluid; FaSSIF, fasted state
simulated intestinal fluid; GSH, glutathione; NADPH,
nicotinamide adenine dinculeotide phosphate; RO, receptor
occupancy; HPMC, hydroxypropyl methylcellulose; PEG,
polyethylene glycol; SEM, standard error of the mean
(12) Langlois, X.; te Riele, P.; Wintmolders, C.; Leysen, J.E.;
Jurzak, M. Use of the β-imager for rapid ex vivo autoradiography
exemplified with central nervous system penetrating neurokinin 3
antagonists. J. Pharmacol. Exp. Ther., 2001, 299, 712-717.
(13) Lein, E.S.; Hawrylycz, M.J.; Ao, N.; Ayres, M.; Bensinger,
A.; Bernard, A.; Boe, A.F.; Boguski, M.S.; Brockway, K.S.;
Byrnes, E.J., et al. Genome-wide atlas of gene expression in the
adult mouse brain. Nature, 2007, 445, 168-176.
REFERENCES
(1) Maher, M.P.; Wu, N.; Ravula, S.; Ameriks, M.K.; Savall,
B.M.; Liu, C.; Lord, B.; Wyatt, R.M.; Matta, J.A.; Dugovic, C.; et
al. Discovery and characterization of AMPA receptor modulators
selective for TARP-γ8. J. Pharmacol. Exp. Ther., 2016, 357, 394-
414.
(14) Sperry, J.B.; Sutherland, K. A safe and practical procedure
for difluoromethylation of methyl 4-hydroxy-3-iodobenzoate.
Org. Process Res. Dev., 2011, 15, 721-725.
(2) Huganir, R.L.; Nicoll, R.A. AMPARs and synaptic plasticity:
the last 25 years. Neuron, 2013, 80, 704-717.
(15) (a) Xingya, L.; Heqi. P.; Xikui, J. Spontaneous reactions of
potassium phenoxide with dibromoperfluoroalkanes, first
evidence for bromophilic attack on C-Br bonds by the phenoxide
anion. Tetrahedron Lett., 1984, 4937-4940.
(3) Jackson, A.C.; Nicoll, R.A. The expanding social network of
ionotropic glutamate receptors: TARPs and other transmembrane
auxiliary subunits. Neuron, 2011, 70, 178-199.
(4) Tomita, S.; Chen, L.; Kawasaki, Y.; Petralia, R.S.; Wenthold,
R.J.; Nicoll, R.A.; Bredt, D.S. Functional studies and distribution
define a family of transmembrane AMPA receptor regulatory
proteins. J. Cell Biol., 2003, 161(4), 805-815.
ACS Paragon Plus Environment