6366
A. Sugimoto et al. / Tetrahedron Letters 50 (2009) 6364–6367
1 (149.4 g, 0.45 M)
2 (1.25 equiv)
PdCl2 (PPh3)2 (1 mol%)
CuBr (2 mol%)
DMF
1 (0.45 M)
120 °C
PdCl2(PPh3)2 (1 mol%)
CuBr (2 mol%)
iPr2NEt (2.5 equiv)
DMF
20 min residence time
2.62 mL/min
RTU
micromixer
200 µm
micromixer
3
RTU
2 mm x 20 m
iPr2NEt (3 equiv)
0.52 mL/min
2
120 °C
H
N
S
SO2
CO2H
3 (113 g after 6 h)
Scheme 2. 100-g scale production of 3.
N
H
by its ability to eliminate the time lag between optimization and
production as well as to shorten total processing time.
Acknowledgments
We thank MCPT and NEDO for financial support of this work.
I.R. acknowledges JSPS and MEXT Japan for funding. The microreac-
tor system was offered by Dainippon Screen Mfg. Co., Ltd.
Figure 4. Third screening, solution A: 1 (0.45 M in DMF), PdCl2(PPh3)2 (1 mol %),
CuBr (2 mol %), diisopropylethylamine (2.5 equiv), solution B: 2, reaction temper-
ature: 120 °C.
References and notes
1. For selected reviews, see: (a) Ehrfeld, W.; Hessel, V.; Lowe, H. Microreactors:
New Technology for Modern Chemistry; Wiley-VCH: Weinheim, 2000; (b)
Wirth, T. Microreactors in Organic Synthesis and Catalysis; Wiley-VCH:
Weinheim, 2008; (c) Yoshida, J.. Flash Chemistry. Fast Organic Synthesis in
Mirosystem; Wiley: Chichester, 2008; (d) Hessel, V.; Renken, A.; Schouten, J. C.;
Yoshida, J. Micro Process Engineering; Wiley-VCH: Weinheim, 2009; (e)
Jahnisch, K.; Hessel, V.; Lowe, H.; Baerns, M. Angew. Chem., Int. Ed. 2004, 43,
406; (f) Geyer, K.; Codée, J. D. C.; Seeberger, P. H. Chem. Eur. J. 2006, 12, 8434;
(g) Kobayashi, J.; Mori, Y.; Kobayashi, S. Chem. Asian J. 2006, 1, 22; (h) Ahmed-
Omer, B.; Brandt, J. C.; Wirth, T. Org. Biomol. Chem. 2007, 5, 733; (i) Yoshida, J.;
Nagaki, A.; Yamada, T. Chem. Eur. J. 2008, 14, 7450.
internal volume that would allow for higher flow rates (total flow
rate: 3.14 mL/min). When the system was continuously operated
for 6 h, 113 g of 3 was obtained after recrystallization (70% yield).10
In conclusion, a Sonogashira coupling reaction leading to a ma-
trix metalloproteinase inhibitor was investigated as a model reac-
tion using the originally developed automated microflow system.
Quick optimization of reaction conditions was accomplished and
the application to a 10 g order synthesis with this system was
achieved. Using the optimal conditions and a different robust mic-
roreactor system, we successfully carried out a 100-g scale produc-
tion. The real and practical advantage of this system is manifested
2. For an account of our work using microreactors, see: Fukuyama, T.; Rahman, M.
T.; Sato, M.; Ryu, I. Synlett 2008, 151.
3. For our recent work using microreactors, see: Sonogashira reaction: (a)
Fukuyama, T.; Shinmen, M.; Nishitani, S.; Sato, M.; Ryu, I. Org. Lett. 2002, 4,
1691; Mizoroki-Heck reaction: (b) Liu, S.; Fukuyama, T.; Sato, M.; Ryu, I. Org.
Process Res. Dev. 2004, 8, 477; Carbonylative Sonogashira reaction: (c) Rahman,
M. T.; Fukuyama, T.; Kamata, N.; Sato, M.; Ryu, I. Chem. Commun. 2006, 2236;
Photo-induced [2+2] cycloaddition: (d) Fukuyama, T.; Hino, Y.; Kamata, N.;
Ryu, I. Chem. Lett. 2004, 33, 1430; Photo-induced Barton reaction: (e) Sugimoto,
A.; Sumino, Y.; Takagi, M.; Fukuyama, T.; Ryu, I. Tetrahedron Lett. 2006, 47,
6197; (f) Sugimoto, A.; Fukuyama, T.; Sumino, Y.; Takagi, M.; Ryu, I. Tetrahedron
2009, 65, 1593; Tin hydride mediated radical reaction: (g) Fukuyama, T.;
Kobayashi, M.; Rahman, M. T.; Ryu, I. Org. Lett. 2008, 10, 533; Radical
Carboaminoxylation: (h) Wienhöfer, I. C.; Studer, A.; Rahman, M. T.;
Fukuyama, T.; Ryu, I. Org. Lett. 2009, 11, 2457; Radical carbonylation: (i)
Fukuyama, T.; Rahman, M. T.; Kamata, N.; Ryu, I. Beilstein. J. Org. Chem. 2009, 5,
34.
1 (0.45 M)
2 (1.25 equiv)
PdCl2(PPh3)2 (1 mol%)
CuBr (2 mol%)
DMF
micromixer
3
RTU
iPr2NEt
120 °C
4. For a catalyst-screening system using a microreactor, see: de Bellefin, C.;
Tanchoux, N.; Caravieilhes, S.; Grenouillet, P.; Hessel, V. Angew. Chem., Int. Ed.
2000, 39, 3442.
5. (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467; For
reviews, see: (b) Sonogashira, K.. In Comprehensive Organic Synthesis; Trost, B.
M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 3, pp 521–549; (c)
Sonogashira, K. In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang,
P. J., Eds.; Wiley-VCH: New York, 1998; pp 203–229; (d) Chinchilla, R.; Nájera,
C. Chem. Rev. 2007, 107, 874.
6. Tamura, Y.; Watanabe, F.; Nakatani, T.; Yasui, K.; Fuji, M.; Komurasaki, T.;
Tsuzuki, H.; Maekawa, R.; Yoshioka, T.; Kawada, K.; Sugita, K.; Ohtani, M. J. Med.
Chem. 1998, 41, 640.
7. Sonogashira reaction in a microflow system Kawanami, H.; Matsushima, K.;
Sato, M.; Ikushima, Y. Angew. Chem., Int. Ed. 2007, 46, 5129.
8. Product ratio was determined by HPLC analysis by comparing the peak area
with that of the standard solution containing an authentic sample. HPLC
analysis was performed under the following conditions: column, Cosmosil
5C18-AR (4.6 ꢀ 150 mm); solvent, MeCN/H2O/AcOH (50/50/0.1); flow rate,
1 mL/min; detection, 254 nm. It takes ca. 20 min to analyze one sample.
9. Stainless steel made micormixer having T-shaped microchannel (200
lm id).
10. Solution A (1 (149.4 g, 0.45 M), 2 (50.5 g, 1.25 equiv), PdCl2(PPh3)2 (2.44 g,
1 mol %) and CuBr (1.00 g, 2 mol %) in DMF (740 mL)) and solution
(diisopropylethylamine (134.9 g, 3.0 equiv)) were mixed in the micromixer
(200 m, flow rate; solution A: 2.62 mL/min, solution B: 0.52 mL/min), and
B
Figure 5. Fourth screening, solution A: 1 (0.45 M in DMF), PdCl2(PPh3)2 (1 mol %),
CuBr (2 mol %), and 2 (1.25 equiv), solution B: diisopropylethylamine, reaction
temperature: 120 °C.
l