Journal of Materials Chemistry C p. 5259 - 5267 (2015)
Update date:2022-08-17
Topics:
Luo, Shuai
Lin, Jie
Zhou, Jie
Wang, Yi
Liu, Xingyuan
Huang, Yan
Lu, Zhiyun
Hu, Changwei
Three red-emissive D-π-A-structured fluorophores with an aromatic amine as the donor, ethene-1,2-diyl as the π-bridge, and 1,8-naphthalimide as the acceptor subunit, namely, (E)-6-(4-(dimethylamino)styryl)-2-hexyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (Nap1), (E)-2-(2,6-di(isopropyl)phenyl)-6-(4-(dimethylamino)styryl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (Nap2) and (E)-2-(2,6-di(isopropyl)phenyl)-6-(2-(1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)vinyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (Nap3), were designed and synthesized. In-depth investigations on the correlations between their molecular structures and photophysical characteristics revealed that the presence of an electron-rich 4-dimethylaminophenyl donor moiety in compound Nap1 could endow it with a red emission (e.g., λPLmax = 641 nm in the host-guest blend film with a 14 wt% guest composition); moreover, the replacement of the n-hexyl group of Nap1 bonding to the imide nitrogen atom for a more bulky 2,6-di(isopropyl)phenyl one would result in compound Nap2 with more alleviated concentration quenching. Alteration of the 4-(dimethylamino)phenyl donor subunit of Nap2 into a more electron-donating 1,1,7,7-tetramethyljulolidin-9-yl substituent would render compound Nap3 with more improved chromaticity (e.g., λPLmax = 663 nm in a 14 wt% guest-doped film). Consequently, Nap3 could not only emit standard-red fluorescence with satisfactory chromaticity, but it also showed suppressed intermolecular interactions. Using Nap3 as the dopant, a heavily doped standard-red organic light-emitting diode (OLED) with the device configuration of ITO/MoO3 (1 nm)/TcTa (40 nm)/CzPhONI:Nap3 (14 wt%) (20 nm)/TPBI (45 nm)/LiF (1 nm)/Al (80 nm) was fabricated, and the Commission Internationale de L'Eclairage coordinates, maximum external quantum efficiency and maximum current efficiency of this OLED were (0.67,0.32), 1.8% and 0.7 cd A-1, respectively. All these preliminary results indicated that 1,8-naphthalimide derivatives could act as quite promising standard-red light-emitting materials for OLED applications. This journal is
View MoreContact:+86-633-8332928
Address:No.1,Huanghai Yilu.Rizhao,Shandong
AstaTech ( Chengdu) BioPharmaceutical Corp.
website:http://www.astabiochem.cn/
Contact:+86-15198215156-15198215156
Address:SICHUAN CHENGDU
website:http://www.alwaychem.com
Contact:+86-532-8586-4000, 8586-5000
Address:NO.51, TAIPING ROAD, QINGDAO, CHINA. 266001
Suzhou BEC Fine Chemicals Co., Ltd.
website:http://www.bek.com.cn
Contact:0512-68095917 18913193865
Address:6, Jin Shan Road, Suzhou New District, 215011 China Suzhou Nations Pharmaceutical Innovation Center Inside
Xi'an caijing Opto-Electrical Science & Technology Co., LTD
Contact:+86-29-88294447
Address:NO.168 Zhangba Rd. East, Xi'an, P.R.China
Doi:10.1039/c6cc07321b
(2016)Doi:10.1039/c39760000535
(1976)Doi:10.1016/S0040-4039(98)00207-X
(1998)Doi:10.1039/c8cy00936h
(2018)Doi:10.1039/c2jm33886f
(2012)Doi:10.1016/S0040-4039(01)95667-9
(1973)