Full Paper
[19] S. C. Khurana, I. J. Nigam, J. Inorg. Nucl. Chem. 1978, 40, 159–160.
[20] L. Meites, J. Am. Chem. Soc. 1949, 71, 3269–3275.
[21] V. T. A. Kereichuk, I. Churikova, Zh. Neorg. Khim. 1978, 23, 2436–2441.
[22] V. Simeon, K. Voloder, O. A. Weber, Anal. Chim. Acta 1969, 44, 309–313.
[23] K. J. Sircar, K. L. Yadava, J. Chem. Eng. Data 1982, 27, 231–233.
[24] J. H. Dunlop, R. D. Gillard, G. Wilkinson, J. Chem. Soc. A 1966, 1260–1264.
[25] L. Johansson, R. Larsson, Chem. Scr. 1975, 7, 67–75.
[26] L. Johansson, Chem. Scr. 1975, 7, 102–110.
[27] R. Treptow, Inorg. Chem. 1970, 9, 2583–2585.
[28] A. Cotton, Ann. Chim. Phys. 1896, 8, 347–432.
[29] G. S. Manku, A. N. Bhat, B. D. Jain, J. Inorg. Nucl. Chem. 1969, 31, 2533–
2543.
[30] Y.-H. Liu, S.-H. Lee, J.-C. Chiang, P.-C. Chen, P.-H. Chien, C.-I. Yang, Dalton
Trans. 2013, 42, 16857–16867.
[31] F. Jian, P. Zhao, Q. Wang, J. Coord. Chem. 2005, 58, 1133–1138.
[32] C. K. Prout, J. R. Carruthers, F. J. C. Rossotti, J. Chem. Soc. A 1971, 3336–
3342.
[33] H. Soylu, Hacettepe Bull. Nat. Sci. Eng. 1982, 61–73.
[34] J. H. L. Randy, D. Down, Environmental Instrumentation and Analysis
Handbook, Wiley, Hoboken, NJ, 2005, p. 471–472.
NaOH (6 mL, 6.000 mmol) and stirred for 1 h. The blue reaction
mixture was filtered and the light-blue solid washed with acetone
and dried at 50 °C overnight. A clear deep-blue solution and a light-
blue solid compound were isolated, yield 79.9 mg.
Study Considering CuL2H–4: Cu(OH)2 (292.7 mg, 3.000 mmol) and
L-(+)-tartaric acid (900.4 mg, 6.000 mmol) were dissolved in 1 M
NaOH (6 mL, 6.000 mmol) and stirred for 1 h. The deep-blue
solution was filtered and no remaining solid compounds were ob-
served.
Quantum Chemical Calculations and Continuous Shape Meas-
ures: All calculations were performed by using the Orca (version
3.0.3)[53] software package. Structures were optimized with Ahlrich's
latest version of the tzvp base set (in Orca: Def2/tzvp)[54] and with
five different functionals (Becke ′88 exchange and Perdew ′86 corre-
lation BP, the TPSS meta-GGA functional, the hybrid version of TPSS
named TPSSh, the one-parameter hybrid version of the Perdew–
Burke–Ernzerhof GGA functional named PBE0 and the popular
B3LYP functional)[55]. COSMO[56] was used to simulate aqueous con-
ditions. Atom-pairwise dispersion correction of the DFT energy was
performed with Becke–Johnson damping.[57] Found stationary
points were confirmed by subsequent frequency analyses at the
corresponding level of theory. Coordinates for Cu2rac-L2H–4 were
[35] A. E. Martell, R. J. Motekaitis, Determinations and Use of Stability Con-
stants, 2nd ed., Wiley, New York, 1992.
[36] P. Gans, A. Sabatini, A. Vacca, Ann. Chim. 1999, 89, 45–49.
[37] P. Gans, A. Sabatini, A. Vacca, Talanta 1996, 43, 1739–1753.
[38] O. Masson, B. Steele, J. Chem. Soc. Trans. 1899, 75, 725–734.
[39] J. Packer, I. Wark, J. Chem. Soc. Trans. 1921, 1348–1355.
[40] A. V. Ablov, G. A. Popovich, Zh. Obshch. Khim. 1954, 24, 974–978.
[41] R. Scholder, R. Felsenstein, A. Apel, Z. Anorg. Allg. Chem. 1933, 45, 138–
144.
obtained from the molecular structure of Li4[Cu2(rac-tartH–2
-
κ2O1,O2:κ2O3,O4)2]·11.75H2O previously described,[2] whereas the in-
itial structure for Cu2L2H–4 was prepared by using GaussView
v. 5.0.8.[58] Continuous shape measures were calculated by using
the SHAPE program established by Alvarez et al.[59]
[42] H. G. v. Schnering, Angew. Chem. Int. Ed. 1965, 4, 1051–1060; Angew.
Chem. 1965, 77, 1090–1090.
[43] S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, D. Avnir, Coord.
Chem. Rev. 2005, 249, 1693–1708.
[44] J. Zhao, D.-S. Li, Y.-P. Wu, W.-W. Dong, Y.-Y. Wang, Q.-Z. Shi, Inorg. Chim.
Acta 2010, 363, 957–960.
[45] S.-M. Fang, Q. Zhang, M. Hu, E. C. Sañudo, M. Du, C.-S. Liu, Inorg. Chem.
2010, 49, 9617–9626.
Supporting Information (see footnote on the first page of this
article): Details of the combined potentiometric UV/Vis titration, OR-
TEP plots, structural data including bonds and angles, conforma-
tional analysis, hydrogen bonds and continuous shape measures,
UV/Vis spectra and powder diffraction data.
[46] J. B. Goodenough, Magnetism and the Chemical Bond, Wiley, New York–
London, 1963, vol. 1, p. 157–180.
[47] J. Cirera, P. Alemany, S. Alvarez, Chem. Eur. J. 2004, 10, 190–207.
[48] P. Kubelka, J. Opt. Soc. Am. 1948, 38, 1067.
Keywords: Copper · Fehling's solution · Stability constants ·
UV/Vis spectroscopy
[49]
G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112–122.
[50] L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849–854.
[51] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44,
1281–1284.
[1] H. Fehling, Ber. Dtsch. Chem. Ges. 1848, 106–113.
[52] WinXPOW, v.2.21, STOE & Cie GmbH, Darmstadt, 2007.
[2] S. Albrecht, P. Klüfers, Z. Anorg. Allg. Chem. 2013, 639, 280–284.
[3] F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inor-
ganic Chemistry, 6th ed., Wiley, Chichester, UK, 1999, p. 869.
[4] The European Pharmacopeia Commission, in: Europäisches Arzneibuch,
Deutscher Apothekerverlag, 8th ed., Stuttgart, and Govi Verlag, Esch-
born, Germany, 2014, p. 700.
[53] F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73–78.
[54] A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829–5835.
[55] BP: A. D. Becke, Phys. Rev. A 1988, 38, 3098–3100; J. P. Perdew, Phys. Rev.
B 1986, 33, 8822–8824; TPSS and TPSSH: J. Tao, J. P. Perdew, V. N. Starov-
erov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401; B3LYP: A. D. Becke,
Phys. Rev. A 1988, 38, 3098–3100; C. Lee, W. Yang, R. G. Parr, Phys. Rev. B
1988, 37, 785–789; PBE0: C. Adamo, V. Barone, J. Chem. Phys. 1999, 110,
6158–6170.
[56] S. Sinnecker, A. Rajendran, A. Klamt, M. Diedenhofen, F. Neese, J. Phys.
Chem. A 2006, 110, 2235–2245.
[57] A. D. Becke, E. R. Johnson, J. Chem. Phys. 2005, 122, 154101; E. R. John-
son, A. D. Becke. J. Chem. Phys. 2005, 123, 024101; E. R. Johnson, A. D.
Becke. J. Chem. Phys. 2006, 124, 174104; S. Grimme, J. Antony, S. Ehrlich,
H. Krieg, J. Chem. Phys. 2010, 132, 154104.
[58] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nak-
atsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Mont-
gomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,
A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M.
Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
[5] US Pharmacopeial Convention, United States Pharmacopeia, 38 National
Formulary 33, Rockville, 2015, vol. 1, p. 1888.
[6] F. Bullnheimer, E. Seitz, Ber. Dtsch. Chem. Ges. 1899, 2347–2352.
[7] F. Bullnheimer, E. Seitz, Ber. Dtsch. Chem. Ges. 1900, 817–823.
[8] W. Traube, Ber. Dtsch. Chem. Ges. 1921, 54, 3220–3232.
[9] P. Pfeiffer, H. Simons, E. Schmitz, Z. Anorg. Allg. Chem. 1948, 256, 318–
342.
[10] R. Belford, R. Missavage, J. Chem. Soc., Chem. Commun. 1971, 1970–1971.
[11] R. J. Missavage, R. L. Belford, I. C. Paul, J. Coord. Chem. 1972, 2, 145–157.
[12] B. Y. N. D. Chasteen, R. L. Belford, N. Chasteen, Inorg. Chem. 1970, 9, 169–
175.
[13] J. Lefebvre, J. Chim. Phys. Phys. -Chim. Biol. 1957, 54, 601–619.
[14] E. Bottari, M. Vicedomini, J. Inorg. Nucl. Chem. 1971, 33, 1463–1473.
[15] K. Blomqvist, E. R. Still, Inorg. Chem. 1984, 23, 3730–3734.
[16] L. Johansson, Acta Chem. Scand. A 1980, 34, 495–506.
[17] J. Piispanen, L. H. J. Lajunen, Acta Chem. Scand. Sect. A 1995, 49, 241–
247.
[18] M. Rashidipour, Z. Derikvand, A. Shokrollahi, Z. Mohammadpour, A. Az-
adbakht, Arab. J. Chem. 2013, DOI: 10.1016/j.arabjc.2013.12.010.
Eur. J. Inorg. Chem. 2016, 1798–1807
1806
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim