Please do not adjust margins
ChemComm
DOI: 10.1039/C6CC00526H
COMMUNICATION
Journal Name
1
0 M. W. Kanan, D. G. Nocera, Science, 2008, 321, 1072-1075.
After electrolysis for 10 hours, the surface composition and 11 V. Artero, M. Chavarot-Kerlidou, M. Fontecave, Angew.
valence states of the CuO catalyst film material was probed again by Chem. Int. Ed., 2011, 50, 7238-7266.
XPS experiments. Figure S7a shows the Cu 2p spectra of the 12 M. Dincă, Y. Surendranath, D. G. Nocera, Proc. Natl. Acad. Sci.
catalyst. Compared to the freshly electrodeposited CuO material,
very similar shake-up satellite peaks and Cu 2p3/2 peaks were
observed for the catalyst after OER catalysis and these peaks are
U.S.A., 2010, 107, 10337-10341.
1
4
1
7
3 S. M. Barnett, K. I. Goldberg, J. M. Mayer, Nat. Chem., 2012,
, 498-502.
2
+
21, 23, 30
consistent with the typical character of Cu in CuO.
In
4 Z. F. Chen, T. J. Meyer, Angew. Chem. Int. Ed., 2013, 52, 700-
addition, the Cu LMM spectrum showed an obvious single peak
located at 918.2 eV and further confirmed the durability of the CuO
03.
2
2-23, 30
15 M. T. Zhang, Z. F. Chen, P. Kang, T. J. Meyer, J. Am. Chem.
Soc., 2013, 135, 2048-2051.
(
Figure S7b).
electrolysis showed nearly the same diffraction peaks as the fresh
sample (PDF# 89-5895) and SnO on FTO substrate (SnO PDF# 77-
452) (Figure S7c). Therefore, after electrolysis, there still exists Chem. Soc., 2010, 132, 10990-10991.
XRD results for the CuO material after
1
6 W. C. Ellis, N. D. McDaniel, S. Bernhard, T. J. Collins, J. Am.
2
2
0
only pure CuO on the FTO electrode. Based on the above- 17 M. Taki, S. Itoh, S. Fukuzumi, J. Am. Chem. Soc., 2001, 123
,
mentioned XRD and XPS results, the present in situ generated CuO 6203-6204.
material is quite robust for OER catalysis.
1
1
1
6
8 L. M. Mirica, O. X, T. D. P. Stack, Chem. Rev., 2004, 104, 1013-
045.
9 C. J. Cramer, W. B. Tolman, Acc. Chem. Res., 2007, 40, 601-
Conclusions
08.
In summary, our present study reports a simple one-step method 20 P. Kang, E. Bobyr, J. Dustman, K. O. Hodgson, B. Hedman, E. I.
to form highly active heterogeneous CuO catalyst in situ from Cu-EA
complex for OER catalysis in alkaline conditions. The OER activity of
the CuO catalyst showed a very low overpotential of only ~470 mV
Solomon, T. D. P. Stack, Inorg. Chem., 2010, 49, 11030-11038.
1 X. Liu, H. Jia, Z. Sun, H. Chen, P. Xu, P. Du, Electrochem.
Commun., 2014, 46, 1-4.
2
2
to achieve 10 mA/cm in 1.0 M KOH at pH 13.6. This performance
2
2
2
1
2
2 X. Liu, S. Cui, Z. Sun, P. Du, Electrochim. Acta, 2015, 160, 202-
makes it one of the most efficient known copper-based
heterogeneous catalyst for water oxidation. Furthermore, the
electrodeposited CuO material is quite robust during water
oxidation, as evidenced by XRD and XPS measurements after a long
period of electrolysis. The simple synthesis method, low cost, and
08.
3 X. Liu, H. Zheng, Z. Sun, A. Han, P. Du, ACS Catal., 2015, 5,
530-1538.
4 F. Yu, F. Li, B. Zhang, H. Li, L. Sun, ACS Catal., 2014, 5, 627-
high activity of the present CuO thin film catalyst highlight its great 630.
potential as an efficient catalyst for future low-cost electrochemical 25 T. T. Li, S. Cao, C. Yang, Y. Chen, X. J. Lv, W. F. Fu, Inorg.
water splitting devices.
Chem., 2015, 54, 3061-3067.
This work was financially supported by NSFC (21271166, 26 Y. J. Sa, K. Kwon, J. Y. Cheon, F. Kleitz, S. H. Joo, J. Mater.
1473170), the Fundamental Research Funds for the Central Chem. A, 2013, , 9992-10001.
Universities, the Program for New Century Excellent Talents in 27 L. Wu, Q. Li, C. H. Wu, H. Zhu, A. Mendoza-Garcia, B. Shen, J.
2
1
University (NCET), and the Thousand Young Talents Program.
Guo, S. Sun, J. Am. Chem. Soc., 2015, 137, 7071-7074.
8 M. Dinca, Y. Surendranath, D. G. Nocera, Proc. Natl. Acad. Sci.
U.S.A., 2010, 107, 10337-10341.
2
Notes and references
2
5
3
9 A. Han, H. L. Chen, Z. J. Sun, J. Xu, P. Du, Chem. Comm., 2015,
, 11626-11629.
0 N. S. McIntyre, S. Sunder, D. W. Shoesmith, F. W. Stanchell, J.
1
1
J. L. Dempsey, B. S. Brunschwig, J. R. Winkler, H. B. Gray, Acc.
Chem. Res., 2009, 42, 1995-2004.
Vac. Sci. Technol., 1981, 18, 714-721.
1 J. L. Du, Z. F. Chen, S. R. Ye, B. J. Wiley, T. J. Meyer, Angew.
2
3
1
4
5
4
6
4
7
P. Du, R. Eisenberg, Energy Environ. Sci., 2012, 5, 6012-6021.
3
N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. U.S.A., 2006,
03, 15729-15735.
Chem. Int. Ed., 2015, 54, 2073-2078.
D. G. Nocera, Acc. Chem. Res., 2012, 45, 767-776.
J. P. McEvoy, G. W. Brudvig, Chem. Rev., 2006, 106, 4455-
483.
Table of contents
R. Tagore, R. H. Crabtree, G. W. Brudvig, Inorg. Chem., 2008,
7
, 1815-1823.
J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A.
O. T. Patrocinio, N. Y. M. Iha, J. L. Templeton, T. J. Meyer, Acc.
Chem. Res., 2009, 42, 1954-1965.
8
1
9
D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res., 2009, 42,
890-1898.
G. C. Dismukes, R. Brimblecombe, G. A. N. Felton, R. S.
Pryadun, J. E. Sheats, L. Spiccia, G. F. Swiegers, Acc. Chem. Res.,
2
009, 42, 1935-1943.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins