Green Chemistry
Paper
Program by the Austrian Federal Ministry of Transport, 12 (a) A. Podgoršek, M. Zupan and J. Iskra, Angew. Chem., Int.
Innovation and Technology (BMVIT), the Austrian Federal
Ministry of Science, Research and Economy (BMWFW), and by
the State of Styria (Styrian Funding Agency SFG). The authors
gratefully acknowledge Corning SAS for the generous loan of the
Corning Advanced-Flow Lab Photo Reactor used in this study.
Ed., 2009, 48, 8424–8450; (b) R. Mestres and J. Palenzuela,
Green Chem., 2002, 4, 314–316; (c) A. Podgoršek, S. Stavber,
M. Zupan and J. Iskra, Tetrahedron, 2009, 65, 4429–4439;
(d) A. Podgoršek, S. Stavber, M. Zupan and J. Iskra, Green
Chem., 2007, 9, 1212–1218.
13 S. M. K. Nair and P. D. Jacob, Thermochim. Acta, 1991, 181,
269–276.
14 (a) D. Kikuchi, S. Sakaguchi and Y. Ishii, J. Org. Chem.,
1998, 63, 6023–6026; (b) S. Adimurthy, G. Ramachandraiah,
A. V. Bedekar, S. Ghosh, B. C. Ranu and P. K. Ghosh, Green
Chem., 2006, 8, 916–922; (c) S. Adimurthy, S. Ghosh,
P. U. Patoliya, G. Ramachandraiah, M. Agrawal,
M. R. Gandhi, S. C. Upadhyay, P. K. Ghosh and B. C. Ranu,
Green Chem., 2008, 10, 232–237; (d) M. Dinda,
M. K. Agrawal, M. R. Gandhi, S. C. Upadhyay, S. Adimurthy,
S. Chakraborty and P. K. Ghosh, RSC Adv., 2012, 2, 6645–
6649; (e) M. Dinda, S. Samanta, S. Eringathodi and
P. K. Ghosh, RSC Adv., 2014, 4, 12252–12256.
Notes and references
1 I. Saikia, A. J. Borah and P. Phukan, Chem. Rev., 2016, 116,
6837–7042.
2 C. Djerassi, Chem. Rev., 1948, 43, 271–317.
3 (a) D. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel
and T. Noël, Chem. Rev., 2016, 116, 10276–10341;
(b) T. Noël, J. Flow Chem., 2017, 7, 87–93; (c) J. P. Knowles,
L. D. Elliott and K. I. Booker-Milburn, Beilstein J. Org.
Chem., 2012, 8, 2025–2052; (d) F. Politano and G. Oksdath-
Mansilla, Org. Process Res. Dev., 2018, 22, 1045–1062.
4 (a) D. Cantillo and C. O. Kappe, React. Chem. Eng., 2017, 2, 15 (a) M. B. Plutschack, B. Pieber, K. Gilmore and
7–19; (b) D. Cantillo, O. De Frutos, J. A. Rincon, C. Mateos
and C. O. Kappe, J. Org. Chem., 2014, 79, 223–229;
(c) H. E. Bonfield, J. D. Williams, W.-X. Ooi, S. G. Leach,
W. J. Kerr and L. J. Edwards, ChemPhotoChem, 2018, 2,
938–944; (d) D. Šterk, M. Jukič and Z. Časar, Org. Process
Res. Dev., 2013, 17, 145–151; (e) Y. Chen, O. de Frutos,
C. Mateos, J. A. Rincon, D. Cantillo and C. O. Kappe,
P. H. Seeberger, Chem. Rev., 2017, 117, 11796–11893;
(b) B. Gutmann, D. Cantillo and C. O. Kappe, Angew.
Chem., Int. Ed., 2015, 54, 6688–6728; (c) B. Gutmann and
C. O. Kappe, J. Flow Chem., 2017, 7, 65–71;
(d) M. Movsisyan, E. I. P. Delbeke, J. K. E. T. Berton,
C. Battilocchio, S. V. Ley and C. V. Stevens, Chem. Soc. Rev.,
2016, 45, 4892–4928.
ChemPhotoChem, 2018, 2, 906–912; (f) Y. Manabe, 16 (a) G. Glotz, R. Lebl, D. Dallinger and C. O. Kappe, Angew.
Y. Kitawaki, M. Nagasaki, K. Fukase, H. Matsubara,
Y. Hino, T. Fukuyama and I. Ryu, Chem. – Eur. J., 2014, 20,
12750–12753.
5 C. Jimenez-Gonzalez, C. S. Ponder, Q. B. Broxterman and
J. B. Manley, Org. Process Res. Dev., 2011, 15, 912–917.
Chem., Int. Ed., 2017, 56, 13786–13789; (b) R. Van
Kerrebroeck, P. Naert, T. S. A. Heugebaert, M. D’hooghe
and C. V. Stevens, Molecules, 2019, 24, 2116; (c) W. Bin Yu,
D. P. Yu, M. M. Zheng, S. T. Shan, Y. J. Li and J. R. Gao,
J. Chem. Res., 2012, 36, 258–260.
6 (a) H. C. Erythropel, J. B. Zimmerman, T. M. de Winter, 17 E. Serrao, S. Odde, K. Ramkumar and N. Neamati,
L. Petitjean, F. Melnikov, C. H. Lam, A. W. Lounsbury, Retrovirology, 2009, 6, 25.
K. E. Mellor, N. Z. Janković, Q. Tu, L. N. Pincus, 18 See ESI for further details.†
M. M. Falinski, W. Shi, P. Coish, D. L. Plata and 19 D. Prat, A. Wells, J. Hayler, H. Sneddon, C. R. McElroy, S. Abou-
P. T. Anastas, Green Chem., 2018, 20, 1929–1961;
Shehada and P. J. Dunn, Green Chem., 2016, 18, 288–296.
(b) P. T. Anastas and J. C. Warner, Green Chemistry: Theory 20 For examples of photochemistry performed previously
and Practice, Oxford University Press, Oxford, 1998.
7 Y. Otake, J. D. Williams, J. A. Rincón, O. de Frutos,
C. Mateos and C. O. Kappe, Org. Biomol. Chem., 2019, 17,
1384–1388 and references cited therein.
8 T. Hou, P. Lu and P. Li, Tetrahedron Lett., 2016, 57, 2273–
2276.
using this reactor type, see: (a) J. D. Williams, M. Nakano,
R. Gérardy, J. A. Rincon, O. de Frutos, C. Mateos, J.-C.
M. Monbaliu and C. O. Kappe, Org. Process Res. Dev., 2019,
23, 78–87; (b) N. Emmanuel, C. Mendoza, M. Winter,
C. R. Horn, A. Vizza, L. Dreesen, B. Heinrichs and J.-C.
M. Monbaliu, Org. Process Res. Dev., 2017, 21, 1435–1438.
9 L. S. De Almeida, P. M. Esteves and M. C. S. De Mattos, 21 For detailed studies of biphasic mixing within this type of
Tetrahedron Lett., 2015, 56, 6843–6845.
mixing structure, see: (a) M. J. Nieves-Remacha,
A. A. Kulkarni and K. F. Jensen, Ind. Eng. Chem. Res., 2012,
51, 16251–16262; (b) K. J. Wu, V. Nappo and S. Kuhn, Ind.
Eng. Chem. Res., 2015, 54, 7554–7564.
10 (a) Br2 has an exceptionally high vapor pressure : toxicity
ratio, so its handling should be avoided wherever possible:
J. K. Niemeier and D. P. Kjell, Org. Process Res. Dev., 2013,
17, 1580–1590; (b) “H330 – Fatal if inhaled, H400 – Very 22 S. Xu, Q. Hao, H. Li, Z. Liu and W. Zhou, Org. Process Res.
com/catalog/product/aldrich/470864, accessed 8th October 23 S. Veraldi, Mycoses, 2013, 56, 3–15.
2019.
24 (a) J. Shur, R. Price, D. Lewis, P. M. Young, G. Woollam,
11 M. Eissen and D. Lenoir, Chem. – Eur. J., 2008, 14, 9830–
D. Singh and S. Edge, Int. J. Pharm., 2016, 514, 374–383;
(b) S. Hickey, Br. J. Health Care Manag., 2018, 24, 558–564.
9841.
This journal is © The Royal Society of Chemistry 2019
Green Chem.