Advanced Synthesis & Catalysis
10.1002/adsc.201801308
Isopropyl
(Z)-2-[3-oxoisobenzofuran-1-(3H)-
Methyl
(Z)-2-[5-oxofuran-2(5H)-ylidene]acetate
8.
ylidene]acetate (2f). Yield: 64.9 mg, starting from 65.3
mg of 2-[2-(trimethylsilyl)ethynyl]benzoic acid 6a (93%).
White solid, mp = 57-58 °C. IR (KBr): ν = 1791 (s), 1710
Yield: 15.0 mg, starting from 50.5 mg of (Z)-5-
(trimethylsilyl)pent-2-en-4-ynoic acid 7 (32%) White solid,
mp = 59-60 °C. IR (KBr): ν = 1786 (s), 1709 (s), 1651 (m),
–
1
1
(
s), 1652 (s), 1589 (w), 1469 (m), 1377 (m), 1243 (s), 1142
1443 (w), 1057 (w), 883 (w), 826 (s), 748 (m) cm ; H
–1
(
m), 1105 (m), 1027 (m), 972 (m), 833 (m), 774 (m), cm ;
NMR (300 MHz, CDCl
3
): δ = 8.39 (d, J = 5.3, 1 H, =CH,
1
3
H NMR (300 MHz, CDCl ): δ = 9.06 (d, br, J = 7.9, 1 H,
8), 6.48 (d, J = 5.3, 1 H, =CH, 8), 5.95 (s, 1 H,
13
aromatic), 7.99-7.93 (m, 1 H, aromatic), 7.82 (td, J = 7.7,
=CHCO
3
MHz, CDCl ): δ = 167.8, 165.4, 160.4, 142.0, 124.5, 102.2,
+
2 2
Me, 1 H, 8), 3.81 (s, 3 H, CO Me); C NMR (75
1
6
.1, 1 H, aromatic), 7.70 (td, J = 7.5, 0.9, 1 H aromatic),
.12 (s, 1 H, =CH), 5.16 (hept, J = 6.2, 1 H, CHMe ), 1.34
]; C NMR (75 MHz, CDCl ): δ
165.8, 165.1, 157.6, 136.2, 135.2, 132.4, 128.2, 126.5,
2
52.1; GC/MS: m/z = 154 [M , 27], 123 (100), 95 (24), 69
1
3
[
d, J = 6.2, 6H, CH(CH
3
)
2
3
(36).
=
+
1
25.3, 103.0, 68.5, 21.9; GC/MS: m/z =232 [M , 8], 191
(
12), 173 (94), 146 (100), 105 (27), 89 (46), 76 (17);
Acknowledgements
+
HRMS-ESI (m/z): [(M+H) ] calcd for (C13
H
13
O
4
):
2
33.0808; found, 233.0802.
Thanks are also due to Dr. Antonio Palumbo Piccionello
(University of Palermo, Italy) for HRMS measurements.
tert-Butyl
(Z)-2-[3-oxoisobenzofuran-1-(3H)-
ylidene]acetate (2g). Yield: 55.0 mg, starting from 65.6
mg of 2-[2-(trimethylsilyl)ethynyl]benzoic acid 6a (74%).
White solid, mp = 73-74 °C. IR (KBr): ν = 1800 (s), 1717
(
m), 1650 (s), 1472 (w), 1366 (m), 1252 (s), 1140 (m),
–
1
1
1
028 (s), 972 (w), 847 (m), 788 (m), 687 (m) cm ; H
): δ =9.03 (d, J = 7.9, 1 H,
NMR (300 MHz, CDCl
3
References
aromatic), 7.95 (d, J = 7.5, 1 H, aromatic), 7.81 (t, J = 7.5,
H aromatico), 7.69 (t, J = 7.5, 1 H, aromatic), 6.09 (s, 1
1
1
3
[
1] For recent reviews, see: a) B. Gabriele, Synthesis of
Heterocycles by Palladium-Catalyzed Carbonylative
Reactions, in Advances in Transition-Metal Mediated
Heterocyclic Synthesis, 1st ed. (Eds.: D. Solé, I.
Fernández), Academic Press-Elsevier, London, 2018,
Chapter 3; b) Transition Metal Catalyzed
Carbonylative Synthesis of Heterocycles, in Topics in
Heterocyclic Chemistry, Vol. 42 (Eds.: X.-F. Wu, M.
Beller), Springer, Berlin, 2016; c) C. Shen, X.-F. Wu,
Chem. Eur. J. 2017, 23, 2973-2987; d) S. T. Gadge, B.
M. Bhanage, RSC Adv. 2014, 4, 10367-10389; e) X.-F.
Wu, H. Neumann, M. Beller, ChemSusChem 2013, 6,
H, =CH), 1.57 (s, 9 H, t-Bu); C NMR (75 MHz, CDCl
δ = 165.9, 164.8, 157.0, 136.3, 135.2, 132.2, 128.2, 126.5,
3
):
+
1
25.2, 104.5, 81.5, 28.2; GC/MS: m/z = 246 [M , 3], 191
(
(
(
76), 173 (100), 162 (11), 149 (22), 146 (52), 105 (30), 89
+
37), 57 (48); HRMS-ESI (m/z): [(M+Na) ] calcd for
14 4
C H14NaO ): 269.0784; found, 269.0779.
Oxidative Carbonylation of (Z)-5-(Trimethylsilyl)pent-
-en-4-ynoic acid 7 (Equation 4)
2
A 250 mL stainless steel autoclave was charged in the
–
3
presence of air with PdI
2
(2.2 mg, 6.1 10 mmol), KI
10.1 mg, 6.1 10 mmol) and a solution or 7 (50.5 mg,
.30 mmol) in a mixture of dioxane (8.2 mL) and MeOH
–
2
(
0
(
6.8 mL). The autoclave was sealed and, while the mixture
2
29-241; f) X.-F. Wu, H. Neumann, M. Beller, Chem.
was stirred, the autoclave was pressurized with CO (32
atm) and air (up to 40 atm). After being stirred at 80°C for
Rev. 2013, 113, 1-35; g) B. Gabriele, R. Mancuso, G.
Salerno, Eur. J. Org. Chem. 2012, 825-6839.
5
h, the autoclave was cooled, degassed and opened. The
solvent was evaporated (first at 60 °C and 600 mmHg to
remove MeOH, and then at 75 °C and 300 mmHg to
remove dioxane), and the residue was subjected to column
chromatography on silica gel using as eluent hexane to
hexane/AcOEt 95:5. A mixture of methyl (Z)-2-[5-
oxofuran-2(5H)-ylidene]acetate 8 and methyl (E)-2-[5-
oxofuran-2(5H)-ylidene]-2-(trimethylsilyl)acetate 8’ (35
[2] For representative recent examples, see: a) A. Acerbi,
C. Carfagna, M. Costa, R. Mancuso, B. Gabriele, N.
Della Ca’, Chem. Eur. J. 2018, 24, 4835; b) T.
Klucznik, B. Mikulak-Klucznik, M. P. McCormack, H.
Lima, S. Szymkuć, M. Bhowmick, K. Molga, Y. Zhou,
L. Rickershauer, E. P. Gajewska, A. Toutchkine, P.
Dittwald, M. P. Startek, G. J. Kirkovits, R. Roszak, A.
Adamski, B. Sieredzińska, M. Mrksich, S. L. J. Trice,
B. A. Grzybowski, Chem 2018, 4, 522-532; c) Y. Hu,
H. Huang, Org. Lett. 2017, 19, 5070-5073; d) R.
Mancuso, D. S. Raut, N. Marino, G. De Luca, C.
Gordano, S. Catalano, I. Barone, S. Andò, B. Gabriele,
Chem. Eur. J. 2016, 22, 3053-3064; e) R. Shen, T.
Kusakabe, T. Yatsu, Y. Kanno, K. Takahashi, K.
Nemoto, K. Kato, Molecules 2016, 21, article no. 1177;
f) S. V. Giofrè, S. Cirmi, R. Mancuso, F. Nicolò, G.
Lanza, L. Legnani, A: Campisi, M. A. Chiacchio, M.
Navarra, B. Gabriele, R. Romeo, Beilstein J. Org.
Chem. 2016, 12, 2793-2807; g) F. Araniti, R. Mancuso,
A. Lupini, S. V. Giofrè, F. Sunseri, B. Gabriele, M. R.
Abenavoli, Molecules 2015, 20, 17883-17902; h) L. A.
Aronica, L. Giannotti, G. Tuci, F. Zinna, Eur. J. Org.
Chem. 2015, 4944-4949; i) R. Mancuso, B. Gabriele,
Chem. Heterocycl. Compds. 2014, 50, 160-170; j) R.
Mancuso, I. Ziccarelli, D. Armentano, N. Marino, S. V.
Giofrè, B. Gabriele, J. Org. Chem. 2014, 79, 3506-
1
mg) was obtained, as confirmed by H NMR analysis.
From the proton spectrum, the 8:8’ ratio was about 1:0.8,
which corresponded to a yield of 8 of about 41% and of 8’
of 24%. This mixture was further subjected to PTLC using
hexane/AcOEt 93:7, which allowed to obtain ca. 15 mg of
pure 8 (32% yield), while 8’ was still obtained impure with
1
8
(ca. 8 mg; 8’:8 ratio ca. 1:0.3, by HNMR).
Mixture
of
methyl
(Z)-2-[5-oxofuran-2(5H)-
ylidene]acetate 8 and methyl (E)-2-[5-oxofuran-2(5H)-
ylidene]-2-(trimethylsilyl)acetate 8’. Yield: 35 mg,
starting from 50.5 mg of (Z)-5-(trimethylsilyl)pent-2-en-4-
ynoic acid 7. White solid. IR (KBr): ν = 1790 (s), 1713 (s),
1
612 (m), 1558 (w), 1439 (m), 1235 (s), 1714 (m), 1042
–1 1
(
(
3
m), 826 (m) cm ; H NMR (300 MHz, CDCl ): δ = 8.39
d, J = 5.3, 1 H, =CH, 8), 7.83 (d, J = 5.3, 1 H, =CH, 8’),
6
.48 (d, J = 5.3, 1 H, =CH, 8), 6.36 (d, J = 5.3, =CH, 1 H,
’), 5.95 (s, 1 H, =CHCO Me, 1 H, 8), 3.81 (s, 3 H,
Me for 8 + 3 H, CO Me for 8’), 0.31 (s, 9 H, 8’);
): δ = 168.83 (8’), 168.77 (8’),
8
2
13
CO
2
2
C
NMR (75 MHz, CDCl
3
1
67.8 (8), 165.3 (8), 161.4 (8’), 160.4 (8), 142.0 (8), 141.8
(
(
(
(
8’), 124.5 (8), 122.6 (8’), 120.7 (8’), 102.2 (8), 52.1
+
8+8’), ‒0.46 (8’); GC/MS: for 8: m/z = 154 [M , 27], 123
+
100), 95 (24), 69 (36); for 8’: m/z = 226 [M , <0.5], 195
3), 89 (100), 59 (22).
3
518; k) Y. Jiang, T. Kusakabe, K. Takahashi, K. Kato,
5
This article is protected by copyright. All rights reserved.