Full Paper
[22] R. Farra, K. Thiel, A. Winter, T. Klamroth, A. Poppl, A. Kelling, U. Schilde,
A. Taubert, P. Strauch, New J. Chem. 2011, 35, 2793–2803.
[23] E. C. Hosten, R. Betz, Z. Kristallogr. New Cryst. Struct. 2016, 231, 355.
[24] E. Jalilian, R. Z. Liao, F. Himo, H. Brismar, F. Laurell, S. Lidin, CrystEngComm
2011, 13, 4729–4734.
[25] H. Hartl, F. Mahdjour-Hassan-Abadi, Angew. Chem. Int. Ed. Engl. 1994, 33,
1841–1842; Angew. Chem. 1994, 106, 1929.
[26] A. Pfitzner, D. Schmitz, Z. Anorg. Allg. Chem. 1997, 623, 1555–1560.
[27] H. Hartl, F. Mahdjour-Hassan-Abadi, Z. Naturforsch. B 1984, 39, 149–156.
[28] G. A. Bowmaker, G. R. Clark, D. K. P. Yuen, J. Chem. Soc., Dalton Trans.
1976, 2329–2334.
[29] G. A. Bowmaker, G. R. Clark, D. A. Rogers, J. Chem. Soc., Dalton Trans.
1984, 37–45.
[30] S. Ramaprabhu, R. Ferretti, E. A. C. Lucken, G. Bernardinelli, Inorg. Chim.
Acta 1994, 227, 153–157.
[31] G. A. Bowmaker, M. I. Bruce, B. W. Skelton, N. Somers, A. H. White, Z.
Anorg. Allg. Chem. 2007, 633, 1024–1030.
61.3 % (0.0208 g based on Cu) were obtained. The SEM diagrams
of 1–4 can be seen in the Figure S1 in ESI. Specially, the morphology
of 4 is different from others due to its orthorhombic system with
higher symmetry (other compounds are monoclinic systems).
C22H24Cu3I4P (1017.63): calcd. C 25.94, H 2.38; found C 25.65, H 2.29.
IR: ν = 3032 (w), 2932 (m), 1567 (m), 1480 (w), 1459 (s), 1380 (m),
˜
1314 (w), 1192 (m), 1197 (s), 997 (s), 897 (s), 789 (s), 716 (s), 690 (s),
495 (s), 412 (m) cm–1
.
Supporting Information (see footnote on the first page of this
article): The synthesis details of organic quaternary phosphorus
salts, the selected bond lengths and angles, hydrogen bond details,
π–π stacking interactions, C–H···π interaction parameters, SEM dia-
grams, NMR spectra of quaternary phosphorus salts, additional
structural figures PXRD patterns, solid luminescence of PPh3nBu·I,
SEM images of films, total and partial density of states are available.
[32] M. Hashimoto, S. Igawa, M. Yashima, I. Kawata, M. Hoshino, M. Osawa, J.
Am. Chem. Soc. 2011, 133, 10348–10351.
[33] Q. Zhang, T. Komino, S. Huang, S. Matsunami, K. Goushi, C. Adachi, Adv.
Funct. Mater. 2012, 22, 2327–2336.
Acknowledgments
We acknowledge support of this research by National Natural
Science Foundation of China (NOS: 21771038) and National Nat-
ural Science Foundation of Fujian Province (2018J01684,
2017J01409).
[34] X. L. Chen, R. M. Yu, Q. K. Zhang, L. J. Zhou, X. Y. Wu, Q. Zhang, C. Z. Lu,
Chem. Mater. 2013, 25, 3910–3920.
[35] W. Liu, K. Zhu, S. J. Teat, G. Dey, Z. Q. Shen, L. Wang, D. M. O'Carroll, J.
Li, J. Am. Chem. Soc. 2017, 139, 9281–9290.
[36] X. W. Lei, C. Y. Yue, J. Q. Zhao, Y. F. Han, J. T. Yang, R. R. Meng, C. S. Gao,
H. Ding, C. Y. Wang, W. D. Chen, Cryst. Growth Des. 2015, 15, 5416–5426.
[37] J. J. Hou, S. L. Li, C. R. Li, X. M. Zhang, Dalton Trans. 2010, 39, 2701–2707.
[38] Y. R. Qiao, P. Hao, Y. Fu, Inorg. Chem. 2015, 54, 8705–8710.
[39] J. K. Cheng, Y. G. Yao, J. Zhang, Z. J. Li, Z. W. Cai, X. Y. Zhang, Z. N. Chen,
Y. B. Chen, Y. Kang, Y. Y. Qin, Y. H. Wen, J. Am. Chem. Soc. 2004, 126,
7796–7797.
[40] H. H. Li, Z. R. Chen, J. Q. Li, H. B. Zhan, W. X. Zhang, C. C. Huang, C. Ma,
B. Zhao, J. Solid State Chem. 2006, 179, 1415–1420.
[41] A. B. Corradi, M. R. Cramarossa, T. Manfredini, L. P. Battaglia, G. Pelosi, A.
Saccani, F. Sandrolini, J. Chem. Soc., Dalton Trans. 1993, 3587–3591.
[42] H. Hartl, F. Mahdjour-Hassan-Abadi, Angew. Chem. Int. Ed. Engl. 1994, 33,
1841–1842; Angew. Chem. 1994, 106, 1929.
[43] N. P. Rath, E. M. Holt, J. Chem. Soc., Chem. Commun. 1985, 10, 665–667.
[44] E. Jaliliana, S. Lidin, Acta Crystallogr., Sect. E 2010, 66, m432–m433.
[45] E. Cariati, R. Macchi, D. Roberto, R. Ugo, S. Galli, N. Masciocchi, A. Sironi,
Chem. Mater. 2007, 19, 3704–3711.
[46] Y. F. Liu, J. Z. Chen, C. C. Huang, Acta Crystallogr., Sect. E 2007, 63, m2957–
m2965.
[47] C. H. Huang, M. Wen, C. Y. Wang, Y. F. Lu, X. H. Huang, H. H. Li, S. T. Wu,
N. F. Zhuang, X. L. Hu, Dalton Trans. 2017, 46, 1413–1419.
[48] L. J. Xu, J. Y. Wang, X. F. Zhu, X. C. Zeng, Z. N. Chen, Adv. Funct. Mater.
2015, 25, 3033–3042.
[49] T. L. Yu, J. J. Shen, Y. L. Wang, Y. L. Fu, Eur. J. Inorg. Chem. 2015, 1989–
1996.
[50] X. C. Shan, H. B. Zhang, L. Chen, M. Y. Wu, F. L. Jiang, M. C. Hong, Cryst.
Growth Des. 2013, 13, 1377–1381.
[51] X. C. Shan, F. L. Jiang, L. Chen, M. Y. Wu, J. Pan, X. Y. Wan, M. C. Hong, J.
Mater. Chem. C 2013, 1, 4339–4349.
Keywords: Iodocuprate · Quaternary Phosphorus ·
Luminescence · Photocurrent Response
[1] K. T. Kamtekar, A. P. Monkman, M. R. Bryce, Adv. Mater. 2010, 22, 572–
582.
[2] V. Fernandez-Moreira, F. L. Thorp-Greenwood, M. P. Coogan, Chem. Com-
mun. 2010, 46, 186–202.
[3] R. Peng, M. Li, D. Li, Coord. Chem. Rev. 2010, 254, 1–18.
[4] M. Wallesch, D. Volz, D. M. Zink, U. Schepers, M. Nieger, T. Baumann,
S. Brase, Chem. Eur. J. 2014, 20, 6578–6590.
[5] W. Liu, Y. Fang, G. Z. Wei, S. J. Teat, K. C. Xiong, Z. C. Hu, W. P. Lustig, J.
Li, J. Am. Chem. Soc. 2015, 137, 9400–9408.
[6] K. Tsuge, Y. Chishina, H. Hashiguchi, Y. Sasaki, M. Kato, S. Ishizaka, N.
Kitamura, Coord. Chem. Rev. 2016, 306, 636–651.
[7] X. C. Shan, F. L. Jiang, D. Q. Yuan, H. B. Zhang, M. Y. Wu, L. Chen, J. Wei,
S. Q. Zhang, J. Pan, M. C. Hong, Chem. Sci. 2013, 4, 1484–1489.
[8] C. Tard, S. Perruchas, S. Maron, X. F. Le Goff, F. Guillen, A. Garcia, J. Vigne-
ron, A. Etcheberry, T. Gacoin, J. P. Boilot, Chem. Mater. 2008, 20, 7010–
7016.
[9] S. Perruchas, X. F. LeGoff, S. Maron, I. Maurin, F. Guillen, A. Garcia, T.
Gacoin, J. P. Boilot, J. Am. Chem. Soc. 2010, 132, 10967–10969.
[10] Q. Benito, X. F. Le Goff, S. Maron, A. Fargues, A. Garcia, C. Martineau, F.
Taulelle, S. Kahlal, T. Gacoin, J. P. Boilot, S. Perruchas, J. Am. Chem. Soc.
2014, 136, 11311–11320.
[11] X. Zhang, W. Liu, G. Z. Wei, D. Banerjee, Z. Hu, J. Li, J. Am. Chem. Soc.
2014, 136, 14230–14236.
[12] J. J. Shen, X. X. Li, T. L. Yu, F. Wang, P. F. Hao, Y. L. Fu, Inorg. Chem. 2016,
55, 8271–8273.
[52] Z. Liu, P. I. Djurovich, M. T. Whited, M. E. Thompson, Inorg. Chem. 2012,
51, 230–236.
[53] T. H. Kim, Y. W. Shin, J. H. Jung, J. S. Kim, J. Kim, Angew. Chem. Int. Ed.
2008, 47, 685–688; Angew. Chem. 2008, 120, 697.
[13] G. N. Liu, R. Y. Zhao, H. Xu, Z. H. Wang, Q. S. Liu, M. Z. Shahid, J. L. Miao,
G. Chen, C. Li, Dalton Trans. 2018, 47, 2306–2317.
[54] M. J. Leitl, V. A. Krylova, P. I. Djurovich, M. E. Thompson, H. Yersin, J. Am.
Chem. Soc. 2014, 136, 16032–16038.
[14] E. Jalilian, R. Z. Liao, F. Himo, H. Brismar, F. Laurelld, S. Lidin, CrystEng-
Comm 2011, 13, 4729–4734.
[55] D. H. Wang, L. M. Zhao, X. Y. Lin, Y. K. Wang, W. T. Zhang, K. Y. Song, H. H.
Li, Z. R. Chen, Inorg. Chem. Front. 2018, 5, 1162–1173.
[56] L. M. Zhao, W. T. Zhang, K. Y. Song, Q. Q. Wu, Y. Li, H. H. Li, Z. R. Chen,
CrystEngComm 2018, 20, 2245–2252.
[57] Y. D. Huang, P. Huo, M. Y. Shao, J. X. Yin, W. C. Shen, Q. Y. Zhu, J. Dai,
Inorg. Chem. 2014, 53, 3480–3487.
[58] W. C. Shen, P. Huo, Y. D. Huang, J. X. Yin, Q. Y. Zhu, J. Dai, RSC Adv. 2014,
4, 60221–60226.
[59] H. H. Li, J. X. Wu, H. J. Dong, Y. L. Wu, Z. R. Chen, J. Mol. Struct. 2011,
987, 180–185.
[15] E. Cariati, E. Lucentib, C. Bottad, U. Giovanellad, D. Marinottoc, S. Righet-
toa, Coord. Chem. Rev. 2016, 306, 566–614.
[16] R. Peng, M. Li, D. Li, Coord. Chem. Rev. 2010, 254, 1–18.
[17] P. C. Ford, E. Cariati, J. Bourassa, Chem. Rev. 1999, 99, 3625–3647.
[18] V. W. W. Yam, K. M. C. Wong, Chem. Commun. 2011, 47, 11579–11592.
[19] K. Tsuge, Y. Chishina, H. Hashiguchi, Y. Sasaki, M. Kato, S. Ishizaka, N.
Kitamura, Coord. Chem. Rev. 2016, 306, 636–651.
[20] M. Sebastian, J. L. Markus, Y. Hartmut, P. Arno, Dalton Trans. 2015, 44,
19305–19313.
[21] E. Jalilian, S. Lidin, CrystEngComm 2011, 13, 5730–5736.
Eur. J. Inorg. Chem. 2018, 4234–4244
4243
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim