E. Schmidt et al. / Journal of Catalysis 272 (2010) 140–150
149
TOF = 6.3 s-1 without CD
TOF = 0.17 s-1 with CD
Pt/Al2O3, H2
toluene, 2 bar, 298 K
Scheme 6. Hydrogenation of cyclohexene on CD-modified Pt/Al2O3 and in the absence of CD.
[4] D.Y. Murzin, P. Mäki-Arvela, E. Toukoniitty, T. Salmi, Catal. Rev. – Sci. Eng. 47
(2005) 175.
4. Conclusions
[5] M. von Arx, T. Mallat, A. Baiker, Top. Catal. 19 (2002) 75.
[6] X. Zuo, H. Liu, M. Liu, Tetrahedron Lett. 39 (1998) 1941.
[7] M. Sutyinszki, K. Szöri, K. Felföldi, M. Bartók, Catal. Commun. 3 (2002) 125.
[8] W.-R. Huck, T. Mallat, A. Baiker, Adv. Synth. Catal. 345 (2003) 255.
[9] S.R. Calvo, R.J. LeBlanc, C.T. Williams, P.B. Balbuena, Surf. Sci. 563 (2004) 57.
[10] A. Vargas, D. Ferri, A. Baiker, J. Catal. 236 (2005) 1.
[11] A. Vargas, A. Baiker, J. Catal. 239 (2006) 220.
[12] D. Ferri, T. Bürgi, J. Am. Chem. Soc. 123 (2001) 12074.
[13] J. Kubota, F. Zaera, J. Am. Chem. Soc. 123 (2001) 11115.
[14] W. Chu, R.J. LeBlanc, C.T. Williams, Catal. Commun. 3 (2002) 547.
[15] F. Zaera, J. Phys. Chem. C 112 (2008) 16196.
We have shown that hydrogenation of CD, a well-known com-
peting reaction during enantioselective hydrogenation on Pt-group
metals, can be used as a ‘‘probe’’ to elucidate the conformation of
the alkaloid on the metal surface during its interaction with the
substrate. This experimental strategy was applied in the enantiose-
lective hydrogenation of
a-ketoesters and an a-ketolactone. The
study revealed that the adsorption geometry of the chiral modifier
is strikingly different in the presence or absence of the substrate,
but the hydrogenation products and the solvent possessing a polar
functional group may also induce conformational changes. Among
these interactions, binding with the activated ketone substrate is
clearly preferred, which relation is of fundamental importance in
achieving high ee even at high conversion of the ketone.
As a result of the strong modifier–substrate interaction, both
molecules are hydrogenated faster and with different selectivity
than in the absence of their binding partner. From the point of view
of the hydrogenation of the activated ketone such rate acceleration
(‘‘ligand acceleration’’) and the high ee up to 98% are well known.
The concomitant hydrogenation of the aromatic anchoring unit of
the modifier undergoes a rate acceleration by about 30% (‘‘reverse
ligand acceleration’’) and a remarkable inversion of the diastere-
oselectivity from (S)- to (R)-CDH6-A (Scheme 4). We show that
interaction of CD with the ketone substrate inverts the dominant
adsorption mode of the modifier from pro(S) to pro(R) at C(40)
(Scheme 1). The probable origin of the ‘‘reverse ligand accelera-
tion’’ is a change in the conformation of the quinoline ring relative
[16] M.A. Laliberte, S. Lavoie, B. Hammer, G. Mahieu, P.H. McBreen, J. Am. Chem.
Soc. 130 (2008) 5386.
[17] C.J. Baddeley, Top. Catal. 25 (2003) 17.
[18] R.J. LeBlanc, W. Chu, C.T. Williams, J. Mol. Catal. A: Chem. 212 (2004) 277.
[19] I. Bakos, S. Szabó, M. Bartók, E. Kálmán, J. Electroanal. Chem. 532 (2002) 113.
[20] A. Kraynov, A. Suchopar, R. Richards, Catal. Lett. 110 (2006) 91.
[21] E. Schmidt, D. Ferri, A. Baiker, Langmuir 23 (2007) 8087.
[22] K.E. Simons, P.A. Meheux, S.P. Griffiths, I.M. Sutherland, P. Johnston, P.B. Wells,
A.F. Carley, M.K. Rajumon, M.W. Roberts, A. Ibbotson, Recl. Trav. Chim. Pays-
Bas 113 (1994) 465.
[23] T. Evans, A.P. Woodhead, A. Gutierrez-Soza, G. Thornton, T.J. Hall, A.A. Davis,
N.A. Young, P.B. Wells, R.J. Oldman, O. Plashkevych, O. Vahtras, H. Agren, V.
Caravetta, Surf. Sci. 436 (1999) L691.
[24] Z. Ma, F. Zaera, J. Phys. Chem. B 109 (2005) 406.
[25] Z. Ma, I. Lee, F. Zaera, J. Am. Chem. Soc. 129 (2007) 16083.
[26] A. Kraynov, A. Suchopar, L. D’Souza, R. Richards, Phys. Chem. Chem. Phys. 8
(2006) 1321.
[27] D.M. Meier, T. Mallat, D. Ferri, A. Baiker, J. Catal. 244 (2006) 260.
[28] T.A. Martinek, T. Varga, F. Fülöp, M. Bartók, J. Catal. 246 (2007) 266.
[29] M. Bartók, P.T. Szabó, T. Bartók, G. Szöllösi, Rapid Commun. Mass Spectrom. 14
(2000) 509.
[30] A. Vargas, G. Santarossa, M. Iannuzzi, A. Baiker, J. Phys. Chem. C 112 (2008)
10200.
[31] K.A. Avery, R. Mann, M. Norton, D.J. Willock, Top. Catal. 25 (2003) 89.
[32] N. Bonalumi, T. Bürgi, A. Baiker, J. Am. Chem. Soc. 125 (2003) 13342.
[33] M.S. Schneider, A. Urakawa, J.D. Grunwaldt, T. Bürgi, A. Baiker, Chem.
Commun. (2004) 744.
to the Pt surface from tilted to nearly parallel (p-bonded) in a
pro(R) conformation at C(40) (most likely SO(3)).
The study revealed the formation of an almost identical modi-
fier–substrate complex in case of three structurally different sub-
strates (MBF, EP, KPL) and the conformational structure of this
modifier–substrate adduct was not affected by the reaction
conditions.
Another important conclusion emerging from this work is that
investigation of the adsorption and interaction of modifier and
substrate by theoretical calculations or spectroscopic methods un-
der not truly in situ conditions has inherent limitations in provid-
ing a useful bases for mechanistic studies in such a complex
system.
The approach of using the competing hydrogenation of the chi-
ral modifier as a probe to characterize the adsorption of the mod-
ifier and its interaction with the substrate during reaction can
probably be extended to other modifiers, substrates, and metals,
and it may provide fundamentally new information for mechanis-
tic considerations.
[34] T. Bürgi, A. Baiker, Acc. Chem. Res. 37 (2004) 909.
[35] E. Schmidt, D. Ferri, A. Vargas, A. Baiker, J. Phys. Chem. C 112 (2008) 3866.
[36] W.-R. Huck, T. Bürgi, T. Mallat, A. Baiker, J. Catal. 216 (2003) 276.
[37] A. Baiker, H.-U. Blaser, in: G. Ertl, H. Knözinger, J. Weitkamp (Eds.), Handbook
of Heterogeneous Catalysis, Wiley-VCH, Weinheim/Germany, 1997, p. 2422.
[38] G. Szöllösi, P. Forgó, M. Bartók, Chirality 15 (2003) S82.
[39] H.-U. Blaser, H.P. Jalett, W. Lottenbach, M. Studer, J. Am. Chem. Soc. 122 (2000)
12675.
[40] E. Schmidt, A. Vargas, T. Mallat, A. Baiker, J. Am. Chem. Soc. 131 (2009) 12358.
[41] E. Schmidt, W. Kleist, F. Krumeich, T. Mallat, A. Baiker, Chem. Eur. J. 16 (2010)
2181.
[42] M. Bartók, T. Bartók, G. Szöllösi, K. Felföldi, Catal. Lett. 61 (1999) 57.
[43] G. Szöllösi, S. Cserényi, F. Fülöp, M. Bartók, J. Catal. 260 (2008) 245.
[44] R. Hess, F. Krumeich, T. Mallat, A. Baiker, Catal. Lett. 92 (2004) 141.
[45] F.W. Vierhapper, E.L. Eliel, J. Org. Chem. 40 (1975) 2729.
[46] D.M. Meier, A. Urakawa, N. Turrà, H. Rüegger, A. Baiker, J. Phys. Chem. A 112
(2008) 6150.
[47] M. von Arx, T. Bürgi, T. Mallat, A. Baiker, Chem. Eur. J. 8 (2002) 1430.
[48] Y. Nitta, A. Shibata, Chem. Lett. 27 (1998) 161.
[49] K. Borszéky, T. Bürgi, Z. Zhaohui, T. Mallat, A. Baiker, J. Catal. 187 (1999) 160.
[50] I.C. Lee, R.I. Masel, J. Phys. Chem. B 106 (2002) 368.
[51] E. Tálas, J.L. Margitfalvi, O. Egyed, J. Catal. 266 (2009) 191.
[52] B. Török, K. Balázsik, M. Török, K. Felföldi, M. Bartók, Catal. Lett. 81 (2002) 55.
[53] M. Sutyinszki, K. Szöri, K. Felföldi, M. Bartók, Catal. Lett. 81 (2002) 281.
[54] S. Diezi, S. Reimann, N. Bonalumi, T. Mallat, A. Baiker, J. Catal. 239 (2006)
255.
Acknowledgment
[55] M. Schürch, N. Künzle, T. Mallat, A. Baiker, J. Catal. 176 (1998) 569.
[56] R. Hess, T. Mallat, A. Baiker, J. Catal. 218 (2003) 453.
[57] R. Hess, A. Vargas, T. Mallat, T. Bürgi, A. Baiker, J. Catal. 222 (2004) 117.
[58] J.M. Bonello, R.M. Lambert, N. Künzle, A. Baiker, J. Am. Chem. Soc. 122 (2000)
9864.
[59] D. Ferri, T. Bürgi, A. Baiker, J. Phys. Chem. B 108 (2004) 14384.
[60] K. Szöri, M. Sutyinszki, K. Felföldi, M. Bartók, Appl. Catal. A: Gen. 237 (2002)
275.
Financial support by the Swiss National Science Foundation is
kindly acknowledged.
References
[1] T. Mallat, E. Orglmeister, A. Baiker, Chem. Rev. 107 (2007) 4863.
[2] H.-U. Blaser, M. Studer, Acc. Chem. Res. 40 (2007) 1348.
[3] M. Bartók, Curr. Org. Chem. 10 (2006) 1533.
[61] M. Garland, H.-U. Blaser, J. Am. Chem. Soc. 112 (1990) 7048.
[62] D.M. Meier, D. Ferri, T. Mallat, A. Baiker, J. Catal. 248 (2007) 68.