by mixing with excess ethanol bicarbonate mixture at ꢀ78 ꢁC.
The ethanol solution of the resulting esters was used for GC
analysis after addition of a given amount of cyclohexanone
as internal standard.
3
4
5
6
H. Hogeveen and G. F. Bickel, J. Chem. Soc., Chem. Commun.,
1967, 635.
G. A. Olah and R. H. Schlosberg, J. Am. Chem. Soc., 1968, 90,
2726.
G. A. Olah, S. K. Prakash and J. Sommer, Superacids, Wiley-
Interscience, New York, 1985.
`
(a) A. Corma, P. J. Miguel and V. A. Orchilles, J. Catal., 1994,
145, 171; (b) A. Corma, J. Planelles, J. Sandoz-Marin and F.
Thomas, J. Catal., 1985, 93, 30; (c) W. O. Haag and R. M.
Dessau, Proceedings 8th International Congress on Catalysis,
Dechema, Frankfurt am Main, 1984, vol. 2, p. 305.
G. A. Olah, Angew. Chem., Int. Ed. Engl., 1973, 12, 173.
(a) G. A. Olah, S. K. Prakash, R. E. Williams, L. D. Field and
K. Wade, Hypercarbon Chemistry, Wiley-Interscience, New York,
1987; (b) G. A. Olah, K. K. Laali, Q. Wang and G. K. S. Prakash,
Onium Ions, Wiley Interscience, New York, 1998.
Expression of the H/D exchange
To express the amount of hydrons that have been exchanged at
the different carbon atoms of the alkane we generally use the
unit atom % referring to the amount of H exchanged by D
to the initial amount of H times 100.
To calculate the total amount of protons exchanged by D in
the alkane we sum up all the exchange values obtained for each
position in atom % multiplied by the number of hydrons in this
position. Example for propane in DF–SbF5 , 12 mol % SbF5 :
exchange in the methyl groups : 12 atom % (of each primary
hydron) and in the methylene group : 16.5 atom % (of each sec-
ondary position). Total exchange in mol % per mol propane:
6 ꢂ 12% + 2 ꢂ 16.5% ¼ 105 mol % H exchanged for D in
propane.
7
8
´
´
(a) P. M. Esteves, G. G. P. Alberto, A. Ramırez-Solıs and C. J. A.
Mota, J. Am. Chem. Soc., 1999, 121, 7345; (b) P. M. Esteves, C. J.
9
´
A. Mota, A. Ramırez-Solıs and R. Hernandez-Lamoneda, J. Am.
Chem. Soc., 1998, 120, 3213; (c) C. J. A. Mota, P. M. Esteves, A.
´
´
´
´
´
Ramırez-Solıs and R. Hernandez-Lamoneda, J. Am. Chem. Soc.,
1997, 119, 5193; (d ) N. Okulik, N. M. Peruchena, P. M. Esteves,
C. J. A. Mota and A. Jubert, J. Phys. Chem. A, 1999, 103, 8491.
10 P. Ahlberg, A. Karlsson, A. Goeppert, S. O. Nilsson Lill, P. Dine´r
and J. Sommer, Chem. Eur. J., 2001, 7, 1936.
11 J. Sommer, J. Bukala, S. Rouba, R. Graff and P. Ahlberg, J. Am.
Chem. Soc., 1992, 114, 5884.
NMR measurements
12 J. Sommer, J. Bukala, M. Hachoumy and R. Jost, J. Am. Chem.
Soc., 1997, 119, 3274.
13 J.-C. Culmann and J. Sommer, J. Am. Chem. Soc., 1990, 112,
4057.
14 H. Hogeveen, C. J. Gaasbeck and A. F. Bickel, Recl. Trav. Chim.
Pays-Bas, 1969, 88, 703.
15 (a) G. A. Olah, Y. Halpern, J. Shen and Y. K. Mo, J. Am. Chem.
Soc., 1971, 93, 1251; (b) G. A. Olah, Y. Halpern, J. Shen and Y.
K. Mo, J. Am. Chem. Soc., 1973, 95, 4960; (c) G. A. Olah, Y. K.
Mo and J. A. Olah, J. Am. Chem. Soc., 1973, 95, 4939.
16 J. W. Otvos, D. P. Stevenson, C. D. Wagner and O. Beeck, J. Am.
Chem. Soc., 1951, 73, 5741.
17 D. P. Stevenson, C. D. Wagner, O. Beeck and J. W. Otvos, J. Am.
Chem. Soc., 1952, 74, 3269.
18 J. Sommer, A. Sassi, M. Hachoumy, R. Jost, A. Karlsson and
P. Ahlberg, J. Catal., 1997, 171, 391.
1H and 2H NMR spectra were recorded on a Bruker AM
400 (400 MHz) spectrometer. Quantitative and qualitative
deuterium content was calculated by comparison of the 1H
and H NMR spectra recorded after addition of an adequate
amount of freon-113 (CF2ClCClF2) solution of a CD3Cl–
CHCl3 mixture used as internal standard.
2
Gas chromatography
The analysis of hydrocarbons were performed on a Girdel 300
with FID detector using a packed Hayesed R column (Ø ¼
1/800, l ¼ 2 m). Helium was used as carrier gas. The concentra-
tion of H2 (HD in our case) was determined on an Intersmat
˚
IGC 112M equipped with a 5 A molecular sieve. Argon was
employed as carrier gas. The results were computed on a Delsi
Instrument ENICA recorder integrator.
19 (a) J. Sommer, M. Hachoumy, F. Garin and J. Barthomeuf, J.
Am. Chem. Soc., 1994, 116, 5491; (b) J. Sommer, M. Hachoumy,
´
F. Garin, J. Barthomeuf and J. Vedrine, J. Am. Chem. Soc., 1995,
117, 1135; (c) J. Sommer, D. Habermacher, M. Hachoumy, R.
Jost and A. Reynaud, Appl. Catal. A, 1996, 146, 193; (d ) J. Som-
mer, R. Jost and M. Hachoumy, Catal. Today, 1997, 38, 309.
20 A. Goeppert, B. Louis and J. Sommer, Catal. Lett., 1998, 56, 43.
21 J. Sommer and J. Bukala, Acc. Chem. Res., 1993, 26, 370.
22 R. Jost and J. Sommer, Rev. Chem. Intermed., 1988, 9, 171.
23 J.-C. Culmann, M. Fauconnet, R. Jost and J. Sommer, New J.
Chem., 1999, 23, 863.
Acknowledgements
Financial support of the Loker Hydrocarbon Institute, USC,
Los Angeles, is gratefully acknowledged.
24 J. Sommer, J. Bukala and M. Hachoumy, Res. Chem. Intermed.,
1996, 22, 753.
References
1
2
H. Pines, The Chemistry of Catalytic Hydrocarbon Conversion,
Academic Press, New York, 1981.
G. A. Olah and A. Molnar, Hydrocarbon Chemistry, Wiley-Inter-
science, New York, 1995.
25 G. J. Kramer, R. A. van Santen, C. A. Emeis and A. K. Nowak,
Nature, 1993, 363, 529.
26 J. M. Vollmer and T. N. Truong, J. Phys. Chem. B, 2000, 104,
6308.
New J. Chem., 2002, 26, 1335–1339
1339