Organometallics 1998, 17, 2149-2151
2149
Ger m ylen es a n d Ger m yl Ca tion s w ith th e
,4-Di-ter t-bu tyl-6-(N,N-d im eth yla m in om eth yl)p h en yl
Liga n d
2
Holger Schmidt, Silke Keitemeyer, Beate Neumann, Hans-Georg Stammler,
Wolfgang W. Schoeller, and Peter J utzi*
Faculty of Chemistry, University of Bielefeld, Universit a¨ tstrasse, D-33615 Bielefeld, Germany
Received March 4, 1998
Summary: The 2,4-di-tert-butyl-6-(N,N-dimethylami-
nomethyl)phenyl (Mamx) ligand allows the synthesis of
the germylenes MamxGeCl (1), Mamx2Ge (2), Mamx-
solubility in THF and in toluene. In Et2O as the solvent,
1 cocrystallizes with 18-crown-6; the molecular struc-
ture of 1 is presented in Figure 1.
4
(
Tip)Ge (3; Tip ) 2,4,6-iPr3C6H2), MamxGeN3 (4),
The first experiments demonstrate that 1 is a suitable
substrate for the preparation of the homoleptic, mono-
meric germylene Mamx2Ge (2) and further preparation
of heteroleptic germylenes with inorganic, organic, and
organometallic substituents. Treatment of GeCl2‚-
dioxane with 2 equiv of MamxLi in THF at -80 °C leads
MamxGeN(SiMe3)2 (5), and MamxGe[Fe(CO)2Cp*] (6),
which are all stabilized by coordination of the amino side
chain. Reactions of 2 and 3 with MeI yield the ionic
+
-
compounds Mamx(Tip)(Me)Ge I (7) and Mamx2(Me)-
+
-
Ge I (8), respectively; the X-ray crystal structure of 7
shows a trigonal-planar coordination at the Ge center
and a nearly perpendicular Ge-N bond.
5
to the formation of pale green 2. In the solid state,
only one of the two amino groups coordinates to the
In compounds with low-energy vacant orbitals, sub-
stituents with donor groups in the side chain and with
suitable geometry lead to intramolecular coordination
and consequently to drastic changes in structure and
reactivity as compared to the parent species. In the
chemistry of germanium, this is documented mainly by
6
germanium center. As NMR spectra show, the side
7
chains exchange their positions in solution. This
8
process is quite fast at 80 °C; at -80 °C the dynamic
behavior of 2 is “frozen” on the NMR time scale.9 The
pale green diarylgermylene Mamx(Tip)Ge (3) is pre-
pared analogously by reaction of 1 with 2,4,6-triisopro-
1
some recent examples. The title ligand, abbreviated
1
0
pylphenyllithium.
Crystals suitable for an X-ray
Mamx (methylaminomethyl-m-xylyl), was first synthe-
sized by Yoshifuji et al. and successfully applied in the
chemistry of low-coordinated phosphorus.2 We have
tested this ligand in germanium chemistry and present
here the first results concerning the synthesis and
characterization of monomeric germanium(II) com-
pounds (germylenes) and of ionic germanium(IV) species
with novel features of structure and bonding.
(4) Colorless crystals of 1 and 18-crown-6 in a ratio of 2:1; no
intermolecular coordination to the Ge center is found. Crystallographic
data: C23
3 1
H40ClGeNO , monoclinic, space group P2 /c, a ) 14.2815(7)
Å, b ) 9.8468(5) Å, c ) 18.9434(10) Å, â ) 101.3290(10)°, V ) 2612.0-
3
-3
-1
(2) Å , Z ) 4, D
c
) 1.237 g cm , µ ) 1.296 mm , T ) 183(2) K, 22 940
reflections collected, 5693 unique reflections, R indices (all data) R1
)
0.0320, wR2 ) 0.0626, GOF ) 1.044. Full details of the crystal-
lographic analyses of 1, 3, and 7 are described in the Supporting
2
Information.
(
246 (73, Mamx
Reaction of MamxLi with GeCl2‚dioxane in THF in
5) 2: MS (CI), [m/z (Irel)]: 567 (30, M+ + H), 320 (100, MamxGe ),
+
a 1:1 ratio leads nearly quantitatively to MamxGeCl
+
56 2
). Mp: 105 °C. Anal. Calcd for C34H N Ge: C, 72.22;
3
H, 10.02; N, 4.95. Found: C, 72.14; H, 10.15; N, 4.24.
(
1), which is isolated as a colorless powder with good
(
6) Unpublished results.
1
(7) 2: H NMR (toluene-d
8
, 25 °C) δ 1.38 (s, 18 H, tBu), 1.85 (br, 30
), 7.62 (br, 4 H, aryl-H).
, 80 °C) δ 1.35, 1.75 (2 s, 18 H, tBu), 1.81
HH ) 14 Hz, 2 H, CH ), 3.65 (br d, 2 H,
*
To whom correspondence should be addressed. E-mail:
peter.jutzi@uni-bielefeld.de.
1) (a) Veith, M.; Hobein, P.; R o¨ sler, R. Z. Naturforsch. 1989, 44b,
067. (b) Veith, M.; Becker, S.; Huch, V. Angew. Chem. 1989, 101, 1287.
c) Karsch, H. H. J . Organomet. Chem. 1988, 344, 153. (d) Karsch, H.
H, tBu + NCH
(8) 2: H NMR (toluene-d
3
), 3.05 (br 4 H, CH
2
1
8
2
(
(s, 12 H, NCH
CH ), 7.21 (br s, 2 H, aryl-H), 7.53 (s, 2 H, aryl-H). C NMR (toluene-
), 34.92, 38.83 (C(CH ), 47.70
), 122.30, 149.76 (aryl-C).
3
), 3.12 (d,
J
2
1
3
1
2
(
d
8
, 80 °C): δ 31.87, 34.05(C(CH
3
)
3
3 3
)
H. Russ. Chem. Bull. 1993, 42, 1937 and references cited herein. (e)
J utzi, P.; Schmidt, H.; Neumann, B.; Stammler, H.-G. J . Organomet.
Chem. 1995, 499, 7. (f) Barrau, J .; Rima, G.; Amraoui, T. E. Inorg.
Chim. Acta 1996, 241, 9. (g) Foley, S. R.; Bensimon, C.; Richeson, D.
S. J . Am. Chem. Soc. 1997, 119, 10359. (h) Ossig, G.; Meller, A.;
Br o¨ nneke, C.; M u¨ ller, O.; Sch a¨ fer, M.; Herbst-Irmer, R. Organometal-
lics 1997, 16, 2116. (i) Leung, W.-P.; Kwok, W.-H.; Weng, L.-H.; Law,
L. T. C.; Zhou, Z. Y.; Mak, T. C. W. J . Chem. Soc., Dalton Trans. 1997,
(NCH
3
), ∼68 (CH
2
1
(9) 2: H NMR (toluene-d
1.49, 1.83 (3 s, 9 H, tBu), 1.96 (s, 6 H, NCH
8
, -80 °C) δ 1.34 (m, 6 H, NCH
3
), 1.45,
), 2.09 (s, 9 H, tBu), 2.57,
3
2
3.14, 3.27, 3.75 (4 d, J HH ) 14 Hz, 1 H, CH
2
), 6.93, 7.56, 7.82, 7.94 (4
1
3
s, 1 H, aryl-H). C NMR (toluene-d
8
, -80 °C): δ 31.52, 31.63, 32.28,
),
), 118.28, 121.22, 121.84, 122.27, 141.59, 146.72,
148.86, 149.14, 152.02, 154.66, 158.24, 158.58 (aryl-C).
34.60, 34.80, 34.89, 37.55, 39.57 (tBu), 45.33, 46.65, 48.11 (NCH
65.25, 69.56 (CH
3
2
1
4
301. (j) Drohst, C.; Hitchcock, P. B.; Lappert, M. F.; Pierssens, L. J .-
(10) 3: H NMR (C
H, tBu), 1.51 (d,
CH(CH
6
D
6
) δ 1.01, 1.28 (2 m, 6 H, CH(CH
HH ) 7 Hz, 3 H, CH(CH ), 1.63 (m, 12 H, tBu +
), 1.90, 2.02, (2 s, 3 H, NCH ), 2.85 (p-sep, (pseudo-sep), J HH
), 2.92 (d, J HH ) 13 Hz, 1 H, CH ), 3.20 (p-sep,
HH ) 13 Hz, 1, H, CH ), 5.13
), 7.02, 7.10, 7.29, 7.53 (4 s, 1 H,
): δ 23.03, 24.33, 25.99, 26.25 27.26 (iPr), 31.69
), 32.08 (iPr), 32.80 (C(CH ), 33.30, 34.70 (iPr), 38.00
), 46.66, 47.75 (NCH ), 70.26 (NCH ), 118.42, 121.27, 121.29,
3 2
) ), 1.37 (s, 9
3
M. J . Chem. Soc., Chem. Commun. 1997, 1141. (k) Karsch, H. H.;
Schl u¨ ter, P. A.; Reisky, M. Eur. J . Inorg. Chem. 1998, 433.
J
3 2
)
3
3
)
2
3
2
(
2) Yoshifuji, M.; Kamijo, K.; Toyota, K. Tetrahedron Lett. 1994, 35,
971.
3) 1: H NMR (C
.25 (2 s, 3 H, NCH
.49 (2 s, 1 H, aryl-H). C NMR (C
), 34.86, 37.87 (C(CH ), 43.37, 45.26 (NCH
18.49, 121.45 (tert aryl-C), 144.77, 150.98, 156.19, 157.05 (quart aryl-
) 7 Hz, 1 H, CH(CH
3
)
2
2
3
2
3
J
HH ) 7 Hz, 1 H, CH(CH
3
)
2
), 4.04 (d,
HH ) 7 Hz, 1 H, CH(CH
13
J
2
1
3
(
6
D
6
, 500.1 MHz) δ 1.32, 1.60 (2 s, 9 H, tBu), 1.64,
(p-sep,
J
3 2
)
2
2
7
(
3
), 2.88, 4.50 (2 d,
J
HH ) 14 Hz, 1 H, CH
, 125.75 MHz): δ 31.57, 33.75
), 67.62 (NCH ),
2
), 6.96,
6 6
aryl-H). C NMR (C D
(C(CH
(C(CH
1
3
6
D
6
3
)
)
3
3 3
)
C(CH
3
)
3
3
)
3
3
2
3
3
3
2
1
121.60 (tert aryl-C), 142.35, 147.55, 148.66, 149.25, 155.81, 156.08,
+
+
+
C). MS (CI) [m/z (Irel)]: 355 (57, M ), 320 (100, MamxGe ). Mp: 164
C. Anal. Calcd for C17 28NClGe C, 57.59; H, 7.96; N, 3.95. Found: C,
6.44; H, 7.94; N, 3.60.
158.33, 158.51 (quart aryl-C). MS (CI), [m/z (Irel)]: 523 (86, M ), 320
+
°
5
H
(100, MamxGe ). Mp: 107 °C. Anal. Calcd for C32
H
51NGe: C, 73.58;
H, 9.84; N, 2.68. Found: C, 71.77; H, 10.13; N, 2.49.
S0276-7333(98)00156-3 CCC: $15.00 © 1998 American Chemical Society
Publication on Web 05/08/1998