Chenyi Yi et al.
FULL PAPERS
(5); HR-MS: m/z=250.0991 (M+), calcd. for C17H14O2:
250.0994.
wald, Angew. Chem. Int. Ed. 2003, 42, 5993–5996;
c) A. Kollhofer, T. Pullmann, H. Plenio, Angew. Chem.
Int. Ed. 2003, 42, 1056–1058; d) Z. Novak, A. Szabo, J.
Repasi, A. Kotschy, J. Org. Chem. 2003, 68, 3327–
3329; e) M. Feuerstein, H. Doucet, M. Santelli, Tetrahe-
dron Lett. 2004, 45, 8443–8446; f) J.-C. Hierso, A.
Fihri, R. Amardeil, P. Meunier, H. Doucet, M. Santelli,
V. Ivanov. Org. Lett. 2004, 6, 3473–3476; g) K. W. An-
derson, S. L. Buchwald, Angew. Chem. 2005, 117,
6329–6333; h) M. Lemhadri, H. Doucet, M. Santelli,
Tetrahedron 2005, 61, 9839–9847; i) Y. Liang, Y.-X.
Xie, J.-H. Li, J. Org. Chem. 2006, 71, 379–381.
Methyl 3-(1-naphthylethynyl)benzoate (3c): Viscous oil;
1H NMR (300 MHz, CDCl3): d=8.45 (d, 1H, J=8.5 Hz),
8.31 (m, 1H), 8.01 (d, 1H, J=7.6 Hz), 7.75–7.85 (m, 4H),
7.41–7.60 (m, 4H), 3.93 (s, 3H); 13C NMR (75 MHz,
CDCl3): d=166.4, 135.7, 133.2, 132.7, 130.6, 130.5, 129.7,
129.3, 129.1, 128.6, 128.4, 126.9, 126.5, 126.1, 125.3, 123.9,
120.5, 93.2, 88.5, 52.3; GC-MS: m/z (% rel. int.)=286 (M+,
100), 255 (12), 226 (49), 200 (5), 127 (8), 113 (20), 100 (5);
HR-MS: m/z=286.0992 (M+), calcd. for C20H14O2: 286.0994.
[4] C. Yi, R. Hua, J. Org. Chem. 2006, 71, 2535–2537.
[5] Copper-free means that a copper salt has not been
added as a co-catalyst, however, this does not exclude
the presence of a trace amount of copper in the palladi-
um complex. Indeed, trace amounts of copper (1.36ꢂ
10À4 mg of copper per mg of catalyst) were found in a
palladium catalyst by ICP-MS analyses.
Acknowledgements
This project (20573061) was supported by National Natural
Science Foundation of China. The authors thank Dr. Asish
K. Sharma for his kind English proofreading.
[6] For pioneering work, see: a) D. E. Ames, D. Bull, C.
Takundwa, Synthesis 1981, 364–365; example of recent
reports, see: b) G. Menchi, A. Scrivanti, U. Matteoli, J.
Mol. Chem. A: Chem. 2000, 152, 77–82.
[7] a) Z. Novak, P. Nemes, A. Kotschy, Org. Lett. 2004, 6,
4917–4920; b) H.-F. Chow, C.-W. Wan, K.-H. Low, Y.-
Y. Yeung, J. Org. Chem. 2001, 66, 1910–1913.
[8] a) M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa,
K. L. Hull, R. G. Brisbois, C. J. Markworth, P. A.
Grieco, Org. Lett. 2002, 4, 3199–3202; b) J. Gil-Molto,
C. Najera, Adv. Synth. Catal. 2006, 348, 1874–1882;
c) A. Nagy, Z. Novak, A. Kotschy, J. Organomet.
Chem. 2005, 690, 4453.
[9] The formation of diarylacetylene has also been found
in the reaction of chlorobenzene with trimethylsilylace-
tylene as reported in our recent paper.[4] In addition,
the formation of diarylacetylenes as a considerable by-
product in the reaction of 4-iodotoluene with trimethyl-
silylacetylene under microwave heating has been men-
tioned, see: N. E. Leadbeater, M. Marco; B. J. Tomi-
nack, Org. Lett. 2003, 5, 3919–3922.
References
[1] Examples of reviews, see: a) E.-I. Negishi, Acc. Chem.
Res. 1982, 15, 340–348; b) N. Miyaura, A. Suzuki,
Chem. Rev. 1995, 95, 2457–2483; c) A. Suzuki, J. Orga-
nomet. Chem. 1999, 576, 147–168; d) I. P. Beletskaya,
A. V. Cheprakov, Chem. Rev. 2000, 100, 3009–3066;
e) J. G. de Vries, Can. J. Chem. 2001, 79, 1086–1092;
f) J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lem-
aire, Chem. Rev. 2002, 102, 1359–1470; g) C. E. Tucker,
J. G. de Vries, Top. Catal. 2002, 19, 111–118; h) F. Belli-
na, A. Carpita, R. Ross. Synthesis 2004, 2419–2440;
i) L. Bai, J.-X. Wang, Cur. Org. Chem. 2005, 9, 535–
553.
[2] Examples of recent reviews, see: a) A. F. Littke, G. C.
Fu, Angew. Chem. Int. Ed. 2002, 41, 4176–4211; b) K.
Sonogashira, J. Organomet. Chem. 2002, 653, 46–49;
c) E. Negishi, L. Anastasia, Chem. Rev. 2003, 103,
1979–2017; d) K. C. Nicolaou, P. G. Bulger, D. Sarlah,
Angew. Chem. Int. Ed. 2005, 44, 4442–4489.
[3] a) M. R. Eberhard, Z. Wang, C. M. Jensen, Chem.
[10] N. W. Alcock, T. J. Kemp, F. L. Wimmer, J. Chem. Soc.,
Commun. 2002, 818–819; b) D. Gelman, S. L. Buch-
Dalton Trans. 1981, 635–638.
1742
ꢁ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2007, 349, 1738 – 1742