LETTER
PCP Pincer Transition-Metal-Complex-Bound Norvaline Derivatives
1913
(c) Fujimura, F.; Kimura, S. Org. Lett. 2007, 9, 793.
(d) Fracaroli, A. M.; Tashiro, K.; Yaghi, O. M. Inorg. Chem.
2012, 51, 6437. (e) Isozaki, K.; Haga, Y.; Ogata, K.; Naota,
T.; Takaya, H. Dalton Trans 2013, DOI:
4 gel (5 mol% Pd)
K3PO4 (1.0 equiv)
OH
OH
B
O
+
toluene–H2O (1 :1)
60 °C, 6 h
O
10.1039/C3DT51696B.
(4) For recent reviews, see: (a) de la Rica, R.; Pejoux, C.;
Matsui, H. Adv. Func. Mater. 2011, 21, 1018. (b) Gao, Y.;
Zhao, F.; Wang, Q.; Zhang, Y.; Xu, B. Chem. Soc. Rev.
2010, 39, 3425. (c) Suzuki, M.; Hanabusa, K. Chem. Soc.
Rev. 2009, 38, 967. (d) Ulijn, R. V.; Smith, A. M. Chem.
Soc. Rev. 2008, 37, 664. (e) Hirst, A. R.; Escuder, B.;
Miravet, J. F.; Smith, D. K. Angew. Chem. Int. Ed. 2008, 47,
8002.
Scheme 5
In conclusion, we successfully synthesized chemically
and physically robust novel PCP pincer palladium-bound
norvaline derivatives. Self-assembly of the N-/C-double
alkylated palladium-bound norvalines enabled us to pre-
pare palladium-immobilized metallogels. We also found
that a supramolecular gel of the palladium-bound norva-
line showed catalytic activity in the 1,4-conjugate addi-
tion of phenylboronic acid. The palladium-immobilized
metallogel acted as a heterogeneous catalyst for this reac-
tion in the aqueous phase. Improvement of the catalytic
efficiency of the PCP pincer palladium-bound norvaline
gels and application of the supramolecular-gel-catalyzed
reaction to asymmetric C–C bond formation are currently
ongoing in our laboratory and will be reported in due
course.
(5) Isozaki, K.; Ogata, K.; Haga, Y.; Sasano, D.; Ogawa, T.;
Kurata, H.; Nakamura, M.; Naota, T.; Takaya, H. Chem.
Commun. 2012, 48, 3936.
(6) (a) Ogata, K.; Sasano, D.; Yokoi, T.; Isozaki, K.; Seike, H.;
Yasuda, N.; Ogawa, T.; Kurata, H.; Takaya, H.; Nakamura,
M. Chem. Lett. 2012, 14, 194. (b) Ogata, K.; Sasano, D.;
Yokoi, T.; Isozaki, K.; Yoshida, R.; Takenaka, T.; Seike, H.;
Ogawa, T.; Kurata, H.; Yasuda, N.; Takaya, H.; Nakamura,
M. Chem. Eur. J. 2013, 19, DOI: 10.1002/chem.201301513.
(7) Ogata, K.; Sasano, D.; Yokoi, T.; Isozaki, K.; Seike, H.;
Yasuda, N.; Ogawa, T.; Kurata, H.; Takaya, H.; Nakamura,
M. Chem. Lett. 2012, 14, 498.
(8) For reviews on PCP pincer complexes, see: (a) Niu, J.-H.;
Hao, X.-Q.; Gong, J.-F.; Song, M.-P. Dalton Trans. 2011,
40, 5135. (b) Serrano-Becerra, J. M.; Morales-Morales, D.
Curr. Org. Synth. 2009, 6, 169. (c) van der Boom, M. E.;
Milstein, D. Chem. Rev. 2003, 103, 1759.
(9) For the stability of POCOP-type PCP pincer Pd complexes,
see the following pioneering works: (a) Miyazaki, F.;
Yamaguchi, K.; Shibasaki, M. Tetrahedron Lett. 1999, 40,
7379. (b) Bedford, R. B.; Draper, S. M.; Scully, P. N.;
Welch, S. L. New J. Chem. 2000, 24, 745.
(10) (a) Gong, J.-F.; Zhang, Y.-H.; Song, M.-P.; Xu, C.
Organometallics 2007, 26, 6487. (b) Solano-Prado, M. A.;
Estudiante-Negrete, F.; Morales-Morales, D. Polyhedron
2010, 29, 592.
Acknowledgment
This work was supported by a Grant-in-Aid for Scientific Research
of no. 22550099 and ‘The Coordination Programming – Science of
Supermolecular Structure and Creation of Chemical Elements’ of
no. 24108719 from the MEXT, CREST (11103784 and 11102545)
and PRESTO (07051361) from the JST, and through the ‘Funding
Program for Next generation World-Leading Researchers’ initiated
by the CSTP. FT-ICR-MS analyses were supported by the JURC at
ICR, Kyoto University. K.O. extends special thanks to the Global
COE programs ‘International Center for Integrated Research and
Advanced Education in Materials Science’ for its financial support.
K.I. and T.T. express special thanks to the MEXT project ‘Inte-
grated Research on Chemical Synthesis’.
(11) For crystallographic data of 6, see Supporting Information.
(12) (a) Collier, P. N.; Campbell, A. D.; Patel, I.; Taylor, R. J. K.
Tetrahedron Lett. 2000, 41, 7115. (b) Collier, P. N.;
Campbell, A. D.; Patel, I.; Raynham, T. M.; Taylor, R. J. K.
J. Org. Chem. 2002, 67, 1802.
(13) (a) Guillena, G.; Kruithof, C. A.; Casado, M. A.; Egmond,
M.; van Koten, G. J. Organomet. Chem. 2003, 668, 3.
(b) Guillena, G.; Rodríguez, G.; Albrecht, M.; van Koten, G.
Chem. Eur. J. 2002, 8, 5368.
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
References and Notes
(14) To a THF solution of Boc-L-allylglycine methyl ester (1.7
mmol) 9-BBN (3.4 mmol) was added at 0 °C and stirred at
r.t. for 3 h. Pd-catalyzed cross-coupling with 6 (1.4 mmol)
was carried out in the presence of 5 mol% of Pd(OAc)2–
SPhos with K3PO4 (3.3 mmol) followed by halide exchange
of the resulting Pd–Br species by excess amount of KCl (170
mmol) to afford 5 (851 mg, 71%) after appropriate
purification; mp 97.5–98.5 °C. 1H NMR (392 MHz, CDCl3):
δ = 7.91–8.03 (m, 8 H, m-ArH), 7.42–7.54 (m, 12 H, ArH),
6.59 (s, 2 H, ArH), 5.00 (d, J = 8.2 Hz, 1 H, NH), 4.26–4.38
(m, 1 H, NHCHCO), 3.74 (s, 3 H, OCH3), 2.47–2.63 (m, 2
H, ArCH2), 1.58–1.90 (m, 4 H, CHCH2CH2CH2), 1.43 [s, 9
H, (CH3)3C]. 13C NMR (99.5 MHz, CDCl3): δ = 173.2 (1 C,
COOCH3), 164.3 (1 C, C6H2), 155.3 (1 C, OCONH), 143.6
(2 C, C6H2), 133.2 (4 C, C6H5), 131.9 (4 C, C6H5), 131.6 (8
C, C6H5), 128.9 (8 C, C6H5), 107.3 (2 C, C6H2), 53.1 (1 C,
NHCH), 52.2 (1 C, COOCH3), 35.2 (1 C, CHCH2CH2CH2),
32.2 (1 C, CHCH2CH2CH2), 28.2 [3 C, OC(CH3)3], 26.7 (1
C, CHCH2CH2CH2). 31P NMR (159 MHz, CDCl3): δ =
(1) For reviews of metalated amino acids, see: (a) Severin, K.;
Bergs, R.; Beck, W. Angew. Chem. Int. Ed. 1998, 37, 1634.
(b) Metzler-Nolte, N. In Bioorganometallics; Jaouen, G.,
Ed.; Wiley-VCH: Weinheim, 2006, 125–179. (c) van
Staveren, D. R.; Metzler-Nolte, N. Chem. Rev. 2004, 104,
5931. (d) Takaya, H. Metal-Molecular Assembly for
Functional Materials, In Briefs in Molecular Science Series;
Vol. 26; Matsuo, Y., Ed.; Springer: New York, 2013, Chap.
6, 49–60.
(2) For reviews of bioimaging and biosensors based on
metalated amino acids, see: (a) Bartholomä, M.; Valliant, J.;
Maresca, K. P.; Babich, J.; Zubieta, J. Chem. Commun.
2009, 493. (b) Dirscherl, G.; König, B. Eur. J. Org. Chem.
2008, 597. (c) Metzler-Nolte, N. Top. Organomet. Chem.
2010, 32, 195. (d) Martić, S.; Labib, M.; Shipman, P. O.;
Kraatz, H.-B. Dalton Trans. 2011, 40, 7264.
(3) (a) Moriuchi, T.; Nomoto, A.; Yoshida, K.; Ogawa, A.;
Hirao, T. J. Am. Chem. Soc. 2001, 123, 68. (b) Isozaki, K.;
Takaya, H.; Naota, T. Angew. Chem. Int. Ed. 2007, 46, 2855.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 1910–1914