Journal of the American Chemical Society
Page 4 of 9
carrier mobility of the materials. As shown in figure 4b, the
World-Leading Researchers (NEXT Programs) of the Japan
1
2
3
4
5
6
7
8
photo-current transients are principally dispersive ones;
some inflection points are detectable to give mean flight time
of charge carriers (figure S5). The estimated values of mobili-
ty are 0.001 cm2V-1s-1 (E = 0 Vcm-1) according to TOF results,
which are one order of magnitude lower than those in
TRMC, and reflect long-range translational motion of charge
carriers. An alternative charge transport pathway may in-
volve transfer through the benzene ring, through the 1,4-
benzenedithiol moiety.16 Experiments that probe this possi-
bility are currently underway.
Society for the Promotion of Science (JSPS).
REFERENCES
1. Zhou, H.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.
2. (a) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne,
R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105. (b) Hendon, C. H.;Tiana,
D.; Walsh, A. Phys. Chem. Chem. Phys. 2012, 14, 13120.
3. (a) Kobayashi, Y.; Jacobs, B.; Allendorf, M. D.; Long, J. R. Chem.
Mater. 2010, 22, 4120. (b) Gándara, F.; Uribe-Romo, F. J.; Britt, D. K.;
Furukawa, H.; Lei, L.; Cheng, R.; Duan, X.; O’Keeffe, M.; Yaghi, O. M.
Chem. Eur. J. 2012, 18, 10595. (c) Narayan, T. C.; Miyakai, T.; Seki, S.;
Dincă, M. J. Am. Chem. Soc. 2012, 134, 12932. (d) Hmadeh, M. et al.
Chem. Mater. 2012, 24, 3511.
4. (a) Kobayashi, A.; Fujiwara, E.; Kobayashi, H. Chem. Rev. 2004,
104, 5243. (b) Maesato, M.; Kawashima, T.; Furushima, Y.; Saito, G.;
Kitagawa, H.; Shirahata, T.; Kibune, M.; Imakubo, T. J. Am. Chem.
Soc. 2012, 134, 17452. (c) Wu, W.; Liu, Y.; Zhu, D. Chem. Soc. Rev.
2010, 39, 1489. (d) Brooks, J. S. Chem. Soc. Rev. 2010, 39, 2667.
5. (a) Heintz, R. A.; Zhao, H.; Ouyang, X.; Grandinetti, G.; Cowen, J.;
Kunbar, K. R. Inorg. Chem. 1999, 38, 144. (b) Avendano, C.; Zhang, Z.;
Ota, A.; Zhao, H.; Dunbar, K. R. Angew. Chem., Int. Ed. 2011, 50, 6543.
(c) Zhang, Z.; Zhao, H.; Kojima, H.; Mori, T.; Dunbar, K. R. Chem.
Eur. J. 2013, 19, 3348. (d) Givaja, G.; Amo-Ochoa, P.; Gómez-García,
C.; Zamora, F. Chem. Soc. Rev. 2012, 41, 115.
6. Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.
7. Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; O’Keeffe, M.;
Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257.
8. Holliday, B. J.; Swager, T. M. Chem. Commun. 2005, 23.
9. (a) Turner, D. L.; Vaid, T. P.; Stephens, P. W.; Stone, K. H.;
DiPasquale, A. G.; Rheingold, A. L. J. Am. Chem. Soc. 2008, 130, 14.
(b) Turner, D. L.; Stone, K. H.; Stephens, P. W.; Walsh, A.; Singh, M.
P.; Vaid, T. P. Inorg. Chem. 2012, 51, 370-376.
10. (a) Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000, 85, 543. (b)
Makovetskiǐ, G. I.; Galyas, A. I.; Demidenko, O. F.; Yanushkevich, K.
I.; Ryabinkina, L. I.; Romanova, O. B. Phys. Solid State 2008, 50, 1826.
11. (a) Walsh, A. Proc. R. Soc. A 2011, 467, 1970. (b) Liu, Y.; Porter, S.
H.; Goldberger, J. E. J. Am. Chem. Soc. 2012, 134, 5044. (c) Li, T.; Liu,
Y.; Porter, S.; Goldberger, J. E. Chem. Mater. 2013, DOI:
10.1021/cm400401z.
12. (a) Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.;
Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 1504. (b) Dietzel, P. D. C.;
Morita, Y.; Blom, R.; Fjellvåg, H. Angew. Chem., Int. Ed. 2005, 44,
6354. (c) Wu, H.; Zhou, W.; Yildirim, T. J. Am. Chem. Soc. 2009, 131,
4995. (d) Bloch, E. D.; Murray, L. J.; Queen, W. L.; Chavan, S.; Maxi-
moff, S. N.; Bigi, J. P.; Krishna, R.; Peterson, V. K.; Grandjean, F.;
Long, G. J.; Smit, B.; Bordiga, S.; Brown, C. M.; Long, J. R. J. Am.
Chem. Soc. 2011, 133, 14814.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Importantly, the charge mobility values observed for
Mn2(DSBDC) are comparable with those found in organic
conductors such as polythiophenes (Σμ = 0.003 ~ 0.1 cm2V-1s-
1
)
14a,17 and rubrene (Σμ = 0.05 cm2V-1s-1),18 as measured by the
same technique, and highlight the potential utility of MOFs
for the construction of various electronic devices that com-
bine high surface area and high charge mobility. In fact, at
978 m2g-1, Mn2(DSBDC) has the highest surface area by al-
most 50% among MOFs that have demonstrated intrinsic
charge delocalization thus far, such as Cu[Ni(pyrazine-2,3-
dithiolate)2] (385 m2g-1),3a Fe(1,2,3-triazolate) (450 m2g-1),3b
Cu- and Ni-catecholates (~425-490 m2g-1),3d and Zn2(TTF-
tetrabenzoate) (662 m2g-1).3c Notably, because the pore size
of the M2(DOBDC) structure type can be extended into the
mesoporous regime19 and assuming that a similar isoreticular
approach is applicable to Mn2(DSBDC), these results rein-
force the idea that high surface area, porosity, and high
charge mobility are not mutually exclusive.
In summary, a redox-matching strategy8 aimed at isomor-
phous substitution of O atoms by S atoms to yield infinite
one-dimensional metal-sulfur chains has led to the synthesis
of a new MOF with high charge mobility. Because the iso-
morphous replacement strategy could be amenable to many
other MOFs containing metal-oxygen chains, the study pro-
vides a potentially general mechanism for the formation of
other porous crystalline materials with high charge mobility,
not least of which are members of the M2(DEBDC) structure
types with other transition metals.
ASSOCIATED CONTENT
Supporting Information
Experimental details, table of X-ray refinement details, TGA
traces, IR spectra, BET linear fit, and TOF data. This material
is available free of charge via the Internet at
13. Vial, L.; Ludlow, R. F.; Leclaire, J.; Pérez-Fernández, R.; Otto, S. J.
Am. Chem. Soc. 2006, 128, 10253.
14. (a) Saeki, A.; Seki, S.; Sunagawa, T.; Ushida, K.; Tagawa, S. Philos.
Mag. 2006, 86, 1261. (b) Saeki, A.; Koizumi, Y.; Aida, T.; Seki, S. Acc.
Chem. Res. 2012, 45, 1193.
15. (a) Grozema, F. C.; Siebbeles, L. D. A. in Charge and Exciton
Transport through Molecular Wires; Siebbeles, L. D. A., Grozema, F.
C., Eds.; Wiley-VCH; Weinheim, Germany, 2011; Chapter 9. (b) Ama-
ya, T.; Seki, S.; Moriuchi, T.; Nakamoto, K.; Nakata, T.; Sakane, H.;
Saeki, A.; Tagawa, S.; Hirao, T. J. Am. Chem. Soc. 2009, 131, 408.
16. Yoshizawa, K. Acc. Chem. Res. 2012, 45, 1612.
17. (a) Saeki, A.; Seki, S.; Koizumi, Y.; Sunagawa, T.; Ushida, K.; Ta-
gawa, S. J. Phys. Chem. B 2005, 109, 10015. (b) Saeki, A.; Ohsaki, S.;
Seki, S.; Tagawa, S. J. Phys. Chem. C 2008, 112, 16643.
AUTHOR INFORMATION
Corresponding Author
ACKNOWLEDGMENT
This work was supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences under
Award Number DE-SC0006937. The NSF provided support to
the DCIF at MIT (CHE-9808061, DBI-9729592). S.S. is sup-
ported by the Funding Program for the Next-Generation
18. Saeki, A.; Seki, S.; Takenobu, T.; Iwasa, Y.; Tagawa, S. Adv. Mater.
2008, 20, 920.
19. Deng, H. et al. Science 2012, 336, 1018.
4
ACS Paragon Plus Environment