2 W. Leitner, Acc. Chem. Res., 2002, 35, 746–756.
3 Ionic Liquids in Synthesis, ed. P. Wasserscheid and T. Welton, Wiley-
VCH, Weinheim, 2003.
4 Aqueous-Phase Organometallic Chemistry, ed. B. Cornils and W. A.
Herrmann, Wiley-VCH, Weinheim, 2004.
5 D. J. Cole-Hamilton, Science, 2003, 299, 1702–1706.
6 C.-J. Li, Chem. Rev., 2005, 105, 3095–3165.
7 C. W. Kohlpaintner, R. W. Fischer and B. Cornils, Appl. Catal., A,
2001, 221, 219–225.
Consequently, even the first generation of water-soluble NHC–
Pd complexes is comparable in activity to the phosphines described
in the literature for aqueous Suzuki reactions.16,36
In conclusion, the successful synthesis of sulfonated imidazolium
and imidazolinium salts opens the door to the aqueous
organometallic chemistry of NHC-ligands. In a preliminary study
we have demonstrated the utility of sulfonated NHC-ligands in the
aqueous Suzuki coupling of aryl chlorides; additional optimization
of the catalytic performance in water will be undertaken in the
future.
8 D. J. C. Constable, A. D. Curzons and V. L. Cunningham, Green
Chem., 2002, 4, 521–527.
9 J.-G. Concepcio´n, A. D. Curzons, D. J. C. Constable and V. L.
Cunningham, Int. J. Life Cycle Assess., 2004, 9, 114–121.
10 M. an der Heiden and H. Plenio, Chem.–Eur. J., 2004, 10, 1789–1797.
11 D. E. Bergbreiter, Chem. Rev., 2002, 102, 3345–3384.
12 K. H. Shaughnessy, Eur. J. Org. Chem., 2006, 1827–1835.
13 M. Berthod, G. Mignani, G. Woodward and M. Lemaire, Chem. Rev.,
2005, 105, 1801–1836.
14 T. A. Kirkland, D. M. Lynn and R. H. Grubbs, J. Org. Chem., 1998,
63, 9904–9909.
15 T. Dwars and G. Oehme, Adv. Synth. Catal., 2002, 344, 239–260.
16 K. W. Anderson and S. L. Buchwald, Angew. Chem., Int. Ed., 2005, 44,
6173–6177.
17 N. Marion, O. Navarro, J. Mei, E. D. Stevens, N. M. Scott and
S. P. Nolan, J. Am. Chem. Soc., 2006, 128, 4101–4111.
¨
18 W. A. Herrmann, K. Ofele, S. K. Schneider, E. Herdtweck and
S. D. Hoffmann, Angew. Chem., Int. Ed., 2006, 45, 3859–3862.
19 F. E. Hahn, Angew. Chem., Int. Ed., 2006, 45, 1348–1352.
20 I. E. Marko, S. Sterin, O. Buisine, G. Mignani, P. Branlard, B. Tinant
and J.-P. Declercq, Science, 2002, 298, 204–206.
21 W. A. Herrmann, J. Schu¨tz, G. D. Frey and E. Herdtweck,
Organometallics, 2006, 25, 2437–2448.
Notes and references
{ All NMR spectra were recorded in dmso-d6 at 300 MHz (1H NMR) and
75.5 MHz (13C NMR).
2,6-Dimethyl-3-(sulfonato-Na+)aniline (2a). 1H-NMR: d 2.06 (s, 3H,
CH3), 2.29 (s, 3H, CH3), 4.45 (s, 2H, NH2), 6.73 (d, 1H, ArH, J = 9 Hz),
7.01 (d, 1H, ArH, J = 9 Hz). 13C-NMR: d 14.2 (CH3), 17.9 (CH3), 115.0
(aryl-CH), 118.2 (aryl-CH), 121.9 (aryl-CMe), 125.6 (aryl-CMe), 144.1
(aryl-CSO3Na), 144.5 (aryl-CNH2).
N,N9-(Ethane-1,2-diylidene)-bis[2,6-dimethyl-3-(sulfonato-Na+)]aniline
(3a). In a round-bottom flask the sulfonated aniline 2a (10.0 g, 44.8 mmol)
was dissolved in methanol (2500 mL). Then glyoxal (4.1 mL, 22.4 mmol)
was added dropwise to the solution, followed by the addition of two drops
of formic acid. The reaction mixture was stirred overnight at room
temperature and then for 24 h at 50 uC. A yellow solid precipitated which
was filtered off and then dried in vacuo. Yield: 8.1 g (16.1 mmol, 72%). 1H-
NMR: d 2.08 (s, 6H, CH3), 2.32 (s, 6H, CH3), 7.05 (d, 2H, CH, JH–H
=
9 Hz), 7.53 (d, 2H, CH, JH–H = 9 Hz), 8.10 (s, 2H, CH). 13C-NMR: d 14.8
(CH3), 18.0 (CH3), 123.0 (HCaryl), 123.9 (HCaryl), 125.9 (Caryl-Me), 126.4
(Caryl-Me), 144.9 (C-SO3Na), 150.2 (Caryl-N), 163.9 (HCimine). HR-MS
calcd for C18H18N2NaO6S2 (M 2 NaCl) 445.0504; found: 445.0509.
N,N9-Ethane-bis[2,6-dimethyl-3-(sulfonato-Na+)]aniline (4a). 5.0 g
(10.0 mmol) of the diimine 3a was dissolved in methanol (120 mL) in an
autoclave flask. Then Pd/C 10% (1.13 g, 1.2 mmol) was added to the
solution and the mixture was stirred for 3 h under 7 bar H2 pressure. The
Pd/C was filtered off through celite and the solution was evaporated under
reduced pressure to obtain the diamine as a white solid. Yield: 4.1 g
(8.1 mmol, 84%). 1H-NMR: d 2.20 (s, 6H, CH3), 2.43 (s, 6H, CH3), 3.00 (s,
4H, CH2), 6.86 (d, 2H, CH, JH–H = 9 Hz), 7.32 (d, 2H, CH, JH–H = 9 Hz).
13C-NMR: d 14.8 (CH3), 18.5 (CH3), 48.5 (H2Camine), 120.4 (HCaryl), 126.3
(HCaryl), 127.9 (Caryl-Me), 130.8 (Caryl-Me), 144.6 (C-SO3Na), 146.8
(Caryl-N). HR-MS calcd for C18H22N2NaO6S2 (M 2 NaCl) 449.08173;
found: 449.08208.
22 G. Occhipinti, H.-R. Bjørsvik and V. R. Jensen, J. Am. Chem. Soc.,
2006, 128, 6952–6964.
23 R. H. Grubbs, Tetrahedron, 2004, 60, 7117–7140.
24 N. M. Scott and S. P. Nolan, Eur. J. Inorg. Chem., 2005, 1815–1828.
25 T. Brendgen, M. Frank and J. Schatz, Eur. J. Org. Chem., 2006,
2378–2383.
26 A. Melaiye, R. S. Simons, A. Milsted, F. Pingitore, C. Wesdemiotis,
C. A. Tessier and W. J. Youngs, J. Med. Chem., 2004, 47, 973–977.
¨
¨
27 I. Ozdemir, B. Yigit, B. C¸ etinkaya, D. Ulku¨, M. N. Tahir and C. Ar|c|,
J. Organomet. Chem., 2001, 633, 27–32.
¨
28 I. Ozdemir, N. Gu¨rbu¨z, Y. Go¨k, E. C¸ etinkaya and B. C¸ etinkaya, Synlett,
2005, 2394–2396.
29 S. H. Hong and R. H. Grubbs, J. Am. Chem. Soc., 2006, 128,
3508–3509.
1,3-Bis[2,6-dimethyl-3-(sulfonato-Na+)phenyl]imidazolinium chloride
(5a). To a solution of the diamine (4a) (1.5 g, 3.0 mmol) in ethanol
(30 mL), were added triethylorthoformate (20 mL), NH4Cl (0.16 g,
3.0 mmol) and a single drop of formic acid. The reaction mixture was
refluxed for 2 d. The precipitated solid was filtered, washed with ether and
then dried under vacuum. Yield: 0.87 g (1.7 mmol, 52%). 1H-NMR: d 2.38
30 J. P. Gallivan, J. P. Jordan and R. H. Grubbs, Tetrahedron Lett., 2005,
46, 2577–2580.
31 A. Courtin, H.-R. Von Tobel and P. Doswald, Helv. Chim. Acta, 1978,
61, 3079–3086.
32 K. L. Billingsley, K. W. Anderson and S. L. Buchwald, Angew. Chem.,
Int. Ed., 2006, 45, 3484–3488.
(s, 6H, CH3), 2.61 (s, 6H, CH3), 4.49 (s, 4H, CH), 7.23 (d, 2H, CH, JH–H
=
33 T. L. Amyes, S. T. Diver, J. P. Richard, F. M. Rivas and K. Toth,
J. Am. Chem. Soc., 2004, 126, 4366–4374.
34 N. Kudo, M. Perseghini and G. C. Fu, Angew. Chem., Int. Ed., 2006, 45,
1282–1284.
35 A. S. Guram, A. O. King, J. G. Allen, X. Wang, L. B. Schenkel, J. Chan,
E. E. Bunel, M. M. Faul, R. D. Larsen, M. J. Martinelli and P. J. Reider,
Org. Lett., 2006, 8, 1787–1789.
9 Hz), 7.83 (d, 2H, CH, JH–H = 9 Hz), 9.11, 9.15 (Im-CH). 13C-NMR: d
14.6 (CH3), 17.5 (CH3), 50.9 (CH2), 127.4 (HCaryl), 128.1 (HCaryl), 133.9
(Caryl-Me), 136.3 (Caryl-Me), 145.7 (C-SO3Na), 145.9 (Caryl-N), 160.5
(HCim-N). HR-MS calcd for C19H21N2NaO6S2 (M 2 NaCl) 483.06368;
found: 483.06274.
1 Chemical Synthesis Using Supercritical Fluids, ed. P. G. Jessop and
W. Leitner, Wiley-VCH, Weinheim, 1999.
36 C. A. Fleckenstein and H. Plenio, Chem.–Eur. J., 2007, 13,
2701–2716.
2872 | Chem. Commun., 2007, 2870–2872
This journal is ß The Royal Society of Chemistry 2007