FULL PAPERS
A Synergistic Combinatorial and Chiroptical Study of Peptide Catalysts
1
1
1
H), 3.04, (m, 2H), 2.94 (m, 1H), 2.64 (m, 1H), 2.58 (m,
H), 2.35 (broad, 2H), 2.04 (broad, 4H), 1.60 (broad, 2H),
.46 (s, 9H), 1.42 (d, J=7.2 Hz, 3H), 1.31 (s, 9H), 0.91 (d,
Gusso, C. Baccin, F. Pinaa, G. Strukul, Organometallics
1994, 13, 3442–3451; c) C. Bolm, G. Schlingloff, K.
Weickhardt, Angew. Chem. 1994, 106, 1944–1946;
Angew. Chem. Int. Ed. Engl. 1994, 33, 1848–1849; d) S.-
I. Murahashi, S. Ono, Y. Imada, Angew. Chem. 2002,
114, 2472–2474; Angew. Chem. Int. Ed. 2002, 41, 2366–
J=6 Hz, 3H), 0.88 (m, 3H), 0.84 (d, J=6 Hz, 3H);
13
C NMR (150 MHz, CDCl ): d=175.03, 173.81, 173.83,
3
1
1
5
3
2
71.56, 170.57, 154.89, 154.36, 136.75, 132.11, 129.82, 128.77,
28.65, 126.97, 124.44, 80.88, 78.56, 66.01, 62.06, 56.69, 55.85,
3.29, 52.43, 49.72, 49.42, 48.35, 48.19, 41.42, 38.53, 37.35,
6.04, 35.86, 34.27, 30.75, 29.97, 28.98, 28.47, 25.20, 25.07,
2368; e) A. Watanabe, T. Uchida, R. Irie, T. Katsuki,
Proc. Natl. Acad. Sci. USA 2004, 101, 5737–5742; f) S.
Xu, Z. Wang, X. Zhang, X. Zhang, K. Ding, Angew.
Chem. 2008, 120, 2882–2885; Angew. Chem. Int. Ed.
2008, 47, 2840–2843; g) S. Xu, Z. Wang, Y. Li, X.
Zhang, H. Wang, K. Ding, Chem. Eur. J. 2010, 16,
3.08, 22.49, 21.28, 17.77, 17.19, 15.42, 14.22. HR-MS (calcu-
+
13
lated/observed for C H N O ): 952.5032/952.5035.
48
70
7
1
Peptide 12: isolated yield: 176 mg (67%). Note: H NMR
data shows highly broadened resonances, suggesting peptide
aggregation, which precludes full assignment of multiplets in
many cases. H NMR (600 MHz, CDCl ): d07.43 (broad,
1
7
4
3021–3035; h) M. T. Reetz, S. Wu, J. Am. Chem. Soc.
2009, 131, 15424–15432; i) L. Zhou, X. Liu, J. Ji, Y.
1
3
Zhang, X. Hu, L. Lin, X. Feng, J. Am. Chem. Soc.
012, 134, 17023–17026.
4] a) P. A. Lichtor, S. J. Miller, ACS Comb. Sci. 2011, 13,
H), 7.37 (d, J=4.8 Hz, 1H), 7.30 (m, 7H), 7.23 (d, J=
.8 Hz, 1H), 7.18 (d, J=6.6 Hz, 1H), 5.04, (d, J=9 Hz, 1H),
.82 (m, 1H), 4.56 (m, half of an AB quartet, other half re-
2
[
321–326; b) P. A. Lichtor, S. J. Miller, Nat. Chem. 2012,
solved poorly, 1H), 4.47 (m, half an AB quartet overlapped
with an additional resonance, 2H), 4.37 (m, 1H), 4.29 (m,
4, 990–995; c) P. A. Lichtor, S. J. Miller, J. Am. Chem.
Soc. 2014, 136, 5301–5308; d) N. C. Abascal, P. A. Lich-
tor, M. W. Giuliano, S. J. Miller, Chem. Sci. 2014, 5,
2
H), 4.19 (m, 1H), 4.07 (m, half an ABX pattern; other half
unresolved, JAB =12,6 Hz, JAX =6.0 Hz, 1H), 3.95 (m, 3H),
.87 (m, 1H), 3.78 (m, 1H), 3.69 (s, 3H), 2.72 (m, 2H), 2.34
m, 1H), 2.00 (m, 4H), 1.70 (m, 7H), 1.43 (s, 9H), 1.43 (d,
unresolved, 3H), 0.97 (d, J=6 Hz, 3H), 0.94 (d, J=6.6 Hz,
4504–4511.
3
(
[
[
5] a) G. Peris, C. E. Jakobsche, S. J. Miller, J. Am. Chem.
Soc. 2007, 129, 8710–8711; b) C. E. Jakobsche, G. Peris,
S. J. Miller, Angew. Chem. 2008, 120, 6809–6813;
Angew. Chem. Int. Ed. 2008, 47, 6707–6711.
6] a) G. Peris, S. J. Miller, Org. Lett. 2008, 10, 3049–3052;
b) D. K. Romney, S. M. Colvin, S. J. Miller, J. Am.
Chem. Soc. 2014, 136, 14019–14022.
7] A. H. Hoveyda, D. A. Evans, G. C. Fu, Chem. Rev.
1993, 93, 1307–1370.
8] a) L. You, J. S. Berman, E. V. Anslyn, Nat. Chem. 2011,
13
3
H), 0.91 (d, J=6 Hz, 3H), 0.89 (d, J=6 Hz, 3H), C NMR
(150 MHz, CDCl ): d=174.13, 173.52, 173.30, 173.09, 171.92,
3
1
8
4
2
71.39, 170.36, 154.90, 137.07, 128.72, 128.42, 128.29, 127.73,
0.91, 73.68, 68.40, 62.25, 56.23, 54.26, 53.37, 52.27, 49.38,
8.59, 48.35, 41.39, 39.74, 39.47, 37.32, 29.83, 28.41, 25.24,
[
[
5.12, 25.97, 23.47, 23.32, 21.30, 21.02, 17.30, HR-MS (calcu-
+
13
lated/observed for C H N O ): 876.4719/876.4736.
42
66
7
3, 943–948; b) L. You, G. Pescitelli, E. V. Anslyn, L.
Di Bari, J. Am. Chem. Soc. 2012, 134, 7117–7125; c) L.
You, J. S. Berman, A. Lucksanawichien, E. V. Anslyn,
J. Am. Chem. Soc. 2012, 134, 7126–7134.
Acknowledgements
[
9] P. Metola, P. M. Nichols, B. Khar, E. V. Anslyn, Chem.
This work was supported by the National Institutes of Health
NIH GM-096403 to S. J. M. and NIH GM-077437 to
E. V. A). We thank Dr. Brandon Q. Mercado of the Yale
CBIC for providing crystallographic data.
Sci. 2014, 5, 4278–4282.
(
[
10] a) J. D. Watson, E. J. Milner-White, J. Mol. Biol. 2002,
315, 171–182; b) K. A. Denessiouk, M. S. Johnson, A. I.
Denesyuk, J. Mol. Biol. 2005, 345, 611–629; c) T. Sheet,
S. Supakar, R. Banerjee, PLoS One 2013, 8, e57366.
[
[
[
11] J. P. Tam, M. W. Riemen, R. B. Merrifield, Pept. Res.
References
1988, 1, 6–18.
12] D. Seebach, A. Thaler, D. Blaser, S. Y. Ko, Helv. Chim.
Acta 1991, 74, 1102–1118.
13] a) I. Polyak, M. T. Reetz, W. Thiel, J. Am. Chem. Soc.
[
1] T. P. Yoon, E. N. Jacobsen, Science 2003, 299, 1691–
693.
2] a) A. Baeyer, V. Villiger, Ber. dtsch. chem. Ges. 1899,
1
[
2012, 134, 2732–2741; b) R. Orru, H. Dudek, C. Marti-
32, 3625–3633; b) G. R. Krow, Org. React. 1993, 43,
noli, D. E. Torres PazmiÇo, A. Royant, M. Weik, M. W.
Fraaije, A. Mattevi, J. Biol. Chem. 2011, 286, 29284–
251–798; c) G. J. ten Brink, I. W. C. E. Arends, R. A.
Sheldon, Chem. Rev. 2004, 104, 4105–4124; d) M.
Uyanik, K. Ishihara, ACS Catal. 2013, 3, 513–520. Key
mechanistic studies: e) W. von E. Doering, E. Dorfman,
J. Am. Chem. Soc. 1953, 75, 5595–5598; f) R. M. Good-
man, Y. Kishi, J. Am. Chem. Soc. 1998, 120, 9392–9393;
g) C. M. Crudden, A. C. Chen, A. L. Calhoun, Angew.
Chem. 2000, 112, 2973–2977; Angew. Chem. Int. Ed.
2
1
2
9291; c) C. T. Walsh, Y.-C. J. Chen, Angew. Chem.
988, 100, 342–352; Angew. Chem. Int. Ed. Engl. 1988,
7, 333–343.
[
14] a) P. Roepstorff, J. Fohlman, Biomed. Mass Spectrom.
1984, 11, 601; b) K. Biemann, Biomed. Environ. Mass
Spectrom. 1988, 16, 99–111.
2
000, 39, 2851–2855.
[15] a) S. Bozzini, S. Gratton, A. Risaliti, A. Stener, J.
Chem. Soc. Perkin Trans. 1 1979, 869–873; b) S. Bozzi-
ni, B. Cova, S. Gratton, A. Lisini, A. Risaliti, J. Chem.
Soc. Perkin Trans. 1 1980, 240–243.
[
3] Recent review: a) K. Ito, in: Comprehensive Chirality,
Vol. 5, (Eds.: E. M. Carreira, H. Yamamoto), Elsevier,
Amsterdam, 2012, pp 1–35. Selected examples: b) A.
Adv. Synth. Catal. 2015, 357, 2301 – 2309
ꢂ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2309