Journal of the American Chemical Society
Page 8 of 10
achieved with other protein transduction methods.15 Un-
like the siCPDs approach recently developed by Matile et
al.,12b who suggested thiol-containing small molecule
drugs and probes may be directly “grown” onto CPDs dur-
ing polymerization, we have successfully developed CPD-
capped MSNs for encapsulation of native small molecule
drugs without the need of introducing thiol handles.
With doxorubicin as an example, we found CPD-MSN-
Dox entered mammalian cells rapidly and was able to
subsequently release free Dox into the cytosol. While
more studies are needed to investigate the utilities of
CPDs as novel “capping” agents for MSNs and other types
of nanoparticles, our preliminary finding herein indicates
that they may be more widely used in future for intracel-
lular delivery of otherwise difficult-to-deliver drugs in a
highly controllable manner.3,10
One of the key features of our two-step, CPD-assisted
approaches is their versatility and flexibility, enabling
immediate delivery of a variety of cargos (recombinant
proteins, antibodies and native small molecule drugs)
with minimum chemical and genetic manipulations. The
other feature is the rapid and “bioorthogonal” cargo-
loading process – with different types of pre-synthesized
CPDs in hand, the resulting CPD-cargo conjugates could
be prepared in a matter of minutes under aqueous condi-
tions, and used immediately for subsequent cell delivery
studies. The minimal cell cytotoxicity of these new CPDs
and their cargo-loaded conjugates further highlights the
unique advantage of this new cell-transduction method
over other existing strategies, and ensures our entire de-
livery protocol is compatible with live-cell experiments.
Future work will focus on the expansion of the types of
CPDs by using other conjugation chemistries, develop-
ment of better CPD purification protocols, and applica-
tion of these CPDs for cell type-specific delivery of other
therapeutically important drugs (including proteins, anti-
bodies and small molecules).
(1) Torres, A. G.; Gait, M. J. Trends Biotechnol. 2012, 30, 185–190.
(2) (a) Fu, A.; Tang, R.; Hardie, J.; Farkas, M. E.; Rotello, V. M.
Bioconj. Chem. 2014, 25, 1602–1608. (b) van den Berg, A.;
Dowdy, S. F. Curr. Opin. Biotechnol. 2011, 22, 888–893. (c)
Lindsay, M. A. Curr. Opin. Pharmacol. 2002, 2, 587–594. (d) M.
A. Mintzer, M. A.; Simanek, E. E. Chem. Rev. 2009, 109, 259–302.
(e) Nguyen, J.; Szoka, F. C. Acc. Chem. Res. 2012, 45, 1153–1162.
(f) Miller, A. D. Chem. Soc. Rev. 2005, 34, 970–994.
(3) (a) Sun, T.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M.; Xia, Y.
Angew. Chem. Int. Ed. 2014, 53, 12320–12364. (b) Williams, H.
D.; Trevaskis, N. L.; Charman, S. A.; Shanker, R. M.; Charman, W.
N.; Pouton, C. W.; Porter, C. J. Pharmacol. Rev. 2013, 65, 315–
499. (c) Jorgensen, W. L.; Duffy, E. M. Adv. Drug Deliv. Rev.
2002, 54, 355–366.
(4) (a) Heitz, F.; Morris, M. C.; Divita, G. Br. J. Pharmacol. 2009, 157,
195–206. (b) Montrose, K.; Yang, Y.; Sun, X.; Wiles, S.; Krissan-
sen, G. W. Sci. Rep. 2013, 3, 1661–1667. (c) Nischan, N.; Herce, H.
D.; Natale, F.; Bohlke, N.; Budisa, N.; Cardoso, M. C.; Hacknen-
berger, C. P. R. Angew. Chem. Int. Ed. 2015, 54, 1950–19530.
(5) (a) Zuris, J. A.; Thompson, D. B.; Shu, Y.; Guilinger, J. P.; Bessen,
J. L.; Hu, J. H.; Maeder, M. L.; Joung, J. K.; Chen, Z. Y.; Liu, D.
R.; Nat. Biotechnol. 2015, 33, 73–80. (b) Cronican, J.J.; Thompson,
D. B.; Beier, K. T.; McNaughton, B. R.; Cepko, C. L.; Liu, D. R.
ACS Chem. Biol. 2010, 5, 747–752.
(6) (a) Allen, T. M.; Cullis, P. R. Adv. Drug Deliv. Rev. 2013, 65, 36–
48. (b) Sarker, S. R.; Hokama, R.; Takeoka, S. Mol. Pharmacol.
2014, 11, 164–174.
(7) Han, D. H.; Na, H. K.; Choi, W. H.; Lee, J. H.; Kim, Y. K.; Won,
C.; Lee, S. H.; Kim, K. P.; Kuret, J.; Min, D. H.; Lee, M. J. Nat.
Commun. 2014, 5: 5633.
(8) (a) Tunnemann, G.; Martin, R. M.; Haupt, S.; Patsch, C.;
Edenhofer, F.; Cardoso, M. C. FASEB J. 2006, 20, 1775–1784. (b)
Ricahrd, J. P.; Melikov, K.; Vives, E.; Ramos, C.; Verbeure, B.;
Gait, M. J.; Chernomordik, L. V.; Lebleu, B. J. Biol. Chem. 2003,
278, 585–590.
(9) Michaudel, Q.; Journot, G.; Regueiro-Ren, A.; Goswami, A.; Guo,
Z.; Tully, T. P.; Zou, L.; Ramabhadran, R. O.; Houk, K. N., Baran,
P. S. Angew. Chem. Int. Ed. 2014, 53, 12091–12096.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) (a) Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur,
P. Chem. Soc. Rev. 2013, 42, 1147–1235. (b) Li, Z.; Barnes, J. C.;
Bosoy, A.; Stoddart, J. F.; Zink, J. I. Chem. Soc. Rev. 2012, 41,
2590–2605. (c) Coll, C.; Bernardos, A.; Martinez-Manez, R.;
Sancenon, F. Acc. Chem. Res. 2013, 46, 339–349.
(11) (a) Zhang, P.; Cheng, F.; Zhou, R.; Cao, J.; Li, J.; Burda, C.; Min,
Q.; Zhu, J. Angew. Chem. Int. Ed. 2014, 53, 2371–2375; (b)
Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y. J. Am. Chem. Soc. 2006,
128, 14792–14793. (c) Yu, C.; Qian, L.; Uttamchandani, M.; Li, L.;
Yao, S. Q. Angew. Chem. Int. Ed. 2015, 54, 10574–10578.
(12) (a) Bang, E.-K.; Gasparini, G.; Molinard, G.; Roux, A.; Sakai, N.;
Matile, S. J. Am. Chem. Soc. 2013, 135, 2088–2091. (b) Gasparini,
G.; Bang, E.-K.; Molinard, G.; Tulumello, D. V.; Ward, S.; Kelley,
S. O.; Roux, A.; Sakai, N.; Matile, S. J. Am. Chem. Soc. 2014, 136,
6069–6074. (c) Chuard, N.; Gasparini, G.; Roux, A.; Sakai, N.; Ma-
tile, S. Org. Biomol. Chem. 2015, 13, 64–67. (d) Gasparini, G.;
Sargsyan, G.; Bang, E. K.; Sakai, N.; Matile, S. Angew. Chem. Int.
Ed. 2015, 54, 7328–7331.
Supporting Information. Other relevant experimental sec-
tions, spectral characterizations of compounds, and supple-
mentary biological results. This material is available free of
(13) Son, S.; Ramgung, R.; Kim, J.; Singha, Kim, W. J. Acc. Chem. Res.
2012, 45, 1100–1112.
(14) Gasparini, G.; Bang, E.-K.; Montenegro, J.; Matile, S. Chem.
Commun. 2015, 51, 10389–10402.
(15) Marschall, A. L.; Frenzel, A.; Schirrmann, T.; Schüngel, M.; Dübel,
S. Mabs. 2011, 3, 3–16.
(16) (a) Khalili, H.; Godwin, A.; Choi, J. W.; Lever, R.; Brocchini, S.
Bioconjug. Chem. 2012, 23, 2262–2277. (b) Polytherics Home
Corresponding Author
Notes
The authors declare no competing financial interests.
Click
Chemistry
Tools
Home
Page.
Funding was provided by the Singapore National Medical
Research Council (CBRG/0038/2013) and the Ministry of
Education (MOE2013-T2-1-048). We also acknowledge
Shikun Nie (NUS) for synthesis of CPDs and their mono-
mers.
2015).
(17) Devaraj, N. K.; Weissleder, R. Acc. Chem. Res. 2011, 44, 816–827.
(18) Li, Z.; Wang, D., Li, L.; Pan, S.; Na, Z., Tan, C. Y. J.; Yao, S. Q. J.
Am. Chem. Soc. 2014, 136, 9990–9998.
(19) Zhang, C.; Tan, C. Y. J.; Ge, J.; Na, Z.; Chen, G. Y. J.;
Uttamchandani, M.; Sun, H.; Yao, S. Q. Angew. Chem. Int. Ed.
2013, 52, 14060–14064.
(20) Katz, B. A. J. Mol. Biol. 1997, 274, 776–800.
8
ACS Paragon Plus Environment