A R T I C L E S
Jones et al.
essential for diodes and complementary circuits, structures
offering high operating speeds and low power consumption.13-20
The operational performance and stability of organic n-type
materials have significantly lagged behind their p-type coun-
terparts; however in recent years major advances have signifi-
cantly increased the understanding of n-type charge transport
and have suggested strategies for improved materials design.21-40
One of the major hurdles remaining is the vulnerability of n-type
charge carriers to ambient conditions. The capability to design
and realize n-type semiconductors where the charge carriers are
thermodynamically air-stable would represent an important
advance in n-type electronics. Specifically, semiconductors could
be tailored to have improved solubility and film-forming
properties without concern for risking atmospheric exposure.
Given that the ultimate promise of organic semiconductors is
in inexpensive, large-area, solution-processed electronics com-
patible with high throughput reel-to-reel manufacture, the
development of air-stable materials is crucial to avoid costly
vacuum/inert atmosphere-based fabrication steps and device
encapsulation.41
The issue of ambient carrier instability in n-type organic
semiconductors was first discussed by de Leeuw et al.42 who
analyzed the vulnerability of n-type charge carriers to charge
carrier trapping by the most common reactive species in an
ambient atmosphere, H2O and O2. It is important to note that
for most n-type semiconductors, air-instability is not due to
intrinsic chemical instability resulting in material decomposition,
but rather, air-instability for typical n-type semiconductors is
due to the vulnerability of the charge carriers to trapping in
ambient conditions, which seriously degrades effective field-
effect mobility, and which is frequently reversed upon applica-
tion of vacuum.32,43 Consequently, rational strategies for in-
creasing ambient stability must prevent the trapping species from
reaching the charge-transporting area of the film and/or to design
molecules/polymers in which the mobile electrons are thermo-
dynamically resistant to trapping. It is generally thought that
H2O/O2 exclusion can be facilitated by utilizing molecular
semiconductors which crystallographically pack in a sufficiently
dense motif so as to resist film penetration by these species or
by appropriately encapsulating the devices in inert atmosphere.
Thermodynamic stability is a more complex issue. Based on
solution-phase electrochemical potentials, a reduction potential
more positive than ∼ -0.66 V vs SCE is thought necessary to
stabilize the charge carriers in n-type organic materials with
respect to H2O oxidation,42 and materials that satisfy this
requirement are known (e.g., C60,44,45 perylene diimides,46,47
naphthalene diimides,48-52 and several oligothiophene fami-
lies33,53).5 However, the thermodynamically founded design of
molecular materials with negatively charged carriers not sus-
ceptible to O2-oxidation
(13) Brennan, K. F.; Brown, A. S. Theory of Modern Electronic Semiconductor
DeVices; John Wiley & Sons, Inc.: New York, 2002; p 448.
(14) Jung, T.; Yoo, B.; Wang, L.; Jones, B. A.; Facchetti, A.; Wasielewski,
M. R.; Marks, T. J.; Dodabalapur, A. Appl. Phys. Lett. 2006, 88,
183102.
(15) Yoo, B.; Madgavkar, A.; Jones, B. A.; Nadkarni, S.; Facchetti, A.; Dimmler,
D.; Wasielewski, M. R.; Marks, T. J.; Dodabalapur, A. IEEE Electron
DeVice Lett. 2006, 27, 737-739.
(16) Dodabalapur, A. Mater. Today 2006, 9, 24-30.
(17) Nadkarni, S.; Yoo, B.; Basu, D.; Dodabalapur, A. Appl. Phys. Lett. 2006,
89, 184105.
(18) De Vusser, S.; Steudel, S.; Myny, K.; Genoe, J.; Heremans, P. Appl. Phys.
Lett. 2006, 88, 162116.
(19) Hizu, K.; Sekitani, T.; Someya, T.; Otsuki, J. Appl. Phys. Lett. 2007, 90,
093504.
(20) Klauk, H.; Zschieschang, U.; Pflaum, J.; Halik, M. Nature 2007, 445, 745-
O2 + 4H+ ) 4e- h 2H2O
748.
(21) Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Bre´das, J.-L.; Ewbank,
P. C.; Mann, K. R. Chem. Mater. 2004, 16, 4436-4451.
(22) Facchetti, A.; Deng, Y.; Wang, A.; Koide, Y.; Sirringhaus, H.; Marks, T.
J.; Friend, R. H. Angew. Chem. 2000, 39, 4547-4551.
(23) Facchetti, A.; Hutchison, G.; Yoon, M.-H.; Letizia, J.; Ratner, M. A.;
Marks, T. J. Polym. Prepr. (Am. Chem. Soc., DiV. Polym. Chem.) 2004,
45, 185.
would require a daunting reduction potential greater than ∼
+0.57 V (vs SCE).42 While materials with such large electron
affinities are rare,5 an overpotential to the reaction between the
charge carriers and O2 could in principle prevent ambient
trapping in materials where the reduction potential was more
negative than ∼+0.57 V (vs SCE), according to de Leeuw’s
model.
(24) Facchetti, A.; Letizia, J.; Yoon, M.-H.; Mushrush, M.; Katz, H. E.; Marks,
T. J. Chem. Mater. 2004, 16, 4715-4724.
(25) Facchetti, A.; Mushrush, M.; Katz, H. E.; Marks, T. J. Angew. Chem., Int.
Ed. 2003, 15, 33-38.
(26) Facchetti, A.; Mushrush, M.; Yoon, M.-H.; Hutchison, G. R.; Ratner, M.
A.; Marks, T. J. J. Am. Chem. Soc. 2004, 126, 13859-13874.
(27) Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Hutchison, G. R.; Ratner, M. A.;
Marks, T. J. J. Am. Chem. Soc. 2004, 126, 13480-13501.
(28) Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Katz, H. E.; Marks, T. J. Angew.
Chem. 2003, 42, 3900-3903.
The most investigated air-stable n-type organic semiconduc-
tors include perfluorinated copper phthalocyanine (CuF16Pc),54-60
(29) Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005,
127, 16866-16881.
(42) de Leeuw, D. M.; Simenon, M. M. J.; Brown, A. R.; Einerhand, R. E. F.
Synth. Met. 1997, 87, 53-59.
(43) Chesterfield, R. J.; McKeen, J. C.; Newman, C. R.; Ewbank, P. C.; da
Silva Filho, D. A.; Bre´das, J.-L.; Miller, L. L.; Mann, K. R.; Frisbie, C. D.
J. Phys. Chem. B 2004.
(44) Kalbac, M.; Kavan, L.; Zukalova, M.; Dunsch, L. J. Am. Chem. Soc. 2006.
(45) Jousselme, B.; Sonmez, G.; Wudl, F. J. Mater. Chem. 2006, 16, 3478-
3482.
(30) Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005,
127, 2339-2350.
(31) Jones, B. A.; Ahrens, M. J.; Yoon, M.-H.; Facchetti, A.; Marks, T. J.;
Wasielewski, M. R. Angew. Chem., Int. Ed. 2004, 43, 6363-6366.
(32) Letizia, J. A.; Facchetti, A.; Stern, C. L.; Ratner, M. A.; Marks, T. J. J.
Am. Chem. Soc. 2005, 127, 13476-13477.
(33) Yoon, M.-H.; DiBenedetto, S.; Facchetti, A.; Marks, T. J. J. Am. Chem.
Soc. 2005, 127, 1348-1349.
(46) Gosztola, D.; Niemczyk, M. P.; Svec, W. J. Phys. Chem. A 2000, 104,
6545-6551.
(34) Cai, X.; Burand, M. W.; Newman, C. R.; da Sliva Filho, D. A.; Pappenfus,
T. M.; Bader, M. M.; Bredas, J.-L.; Mann, K. R.; Frisbie, C. D. J. Phys.
Chem. B 2006, 110, 14590-14597.
(47) van der Boom, T.; Hayes, R. T.; Zhao, Y.; Bushard, P. J.; Weiss, E. A.;
Wasielewski, M. R. J. Am. Chem. Soc. 2002, 124, 9582-9590.
(48) Katz, H. E.; Johnson, J.; Lovinger, A. J.; Wenjie, L. J. Am. Chem. Soc.
2000, 122, 7787-7792.
(35) Cavallini, M.; Stoliar, P.; Moulin, J.-F.; Surin, M.; Leclere, P.; Lazzaroni,
R.; Breiby, D. W.; Andreasen, J. W.; Nielsen, M. M.; Sonar, P.; Grimsdale,
A. C.; Muellen, K.; Biscarini, F. Nano Lett. 2005, 5, 2422-2425.
(36) Coropceanu, V.; Cornil, J.; Da Silva Filho, D. A.; Olivier, Y.; Silbey, R.;
Bre´das, J.-L. Chem. ReV. 2007, 107, 2165.
(49) Lukas, A. S.; Bushard, P. J.; Wasielewski, M. R. J. Phys. Chem. A 2002,
106, 2074-2082.
(50) Miller, S. E.; Lukas, A. S.; Marsh, E.; Bushard, P.; Wasielewski, M. R. J.
Am. Chem. Soc. 2000, 122, 7802-2810.
(37) Nolde, F.; Pisula, W.; Mueller, S.; Kohl, C.; Mu¨ellen, K. Chem. Mater.
2006, 18, 3715-3725.
(38) Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz,
A.; Sirringhaus, H.; Pakula, T.; Mu¨ellen, K. AdV. Mater. 2005, 17, 684-
489.
(51) Miller, S. E.; Zhao, Y.; Schaller, R.; Mulloni, V.; Just, E. M.; Johnson, R.
C.; Wasielewski, M. R. Chem. Phys. 2002, 275, 167-183.
(52) Wiederrecht, G. P.; Svec, W. A.; Wasielewski, M. R.; Galili, T.; Levanon,
H. J. Am. Chem. Soc. 2000, 122, 9715-9722.
(53) Chesterfield, R. J.; Newman, C. R.; Pappenfus, T. M.; Ewbank, P. C.;
Haukaas, M. H.; Mann, K. R.; Miller, L. L.; Frisbie, C. D. AdV. Mater.
2003, 15, 1278-1282.
(39) Wu, J.; Wojciech, P.; Mu¨ellen, K. Chem. ReV. 2007, 107, 718-747.
(40) Zhang, M.; Tsao, H. N.; Pisula, W.; Yang, C.; Mishra, A. K.; Mu¨ellen, K.
J. Am. Chem. Soc. 2007, 129, 3472-3473.
(54) Bao, Z.; Lovinger, A. J.; Brown, J. J. Am. Chem. Soc. 1998, 120, 207-
208.
(41) Bao, Z. AdV. Mater. 2000, 12, 227-230.
9
15260 J. AM. CHEM. SOC. VOL. 129, NO. 49, 2007