7
2
Y. Kashiwagi et al.
LETTER
(
9) Ferreira, P.; Phillips, E.; Rippon, D.; Tsang, S. C.; Hayes, W.
R
O
J. Org. Chem. 2004, 69, 6851.
(
(
10) Dijksman, A.; Arends, I. W. C. E.; Sheldon, R. A. Chem.
Commun. 2000, 271.
11) Wu, X.-E.; Ma, L.; Ding, M.-X.; Gao, L.-X. Synlett 2005,
R'
R
607.
R'
H
N
N
N
OH
O
K3[Fe(CN)6]
(12) NaOCl: (a) Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S.
J. Org. Chem. 1987, 52, 2559. (b) Anelli, P. L.; Biffi, C.;
Montanari, F.; Quici, S. J. Org. Chem. 1989, 54, 2970.
O
N
H
:B
O
(
6
c) Anelli, P. L.; Montanari, F.; Quici, S. Org. Synth. 1990,
9, 212. (d) Siedlecka, R.; Skarzewski, J.; Mlochowski, J.
:
B
Tetrahedron Lett. 1990, 31, 2177. (e) Tong, G.; Perich, J.
W.; Johns, R. B. Tetrahedron Lett. 1990, 31, 3759.
TEMPO PS resin
(
2,6-lutidine)
(
f) Straub, S. T. J. Chem. Educ. 1991, 68, 1048. (g) Davis,
N. J.; Flitsch, S. L. Tetrahedron Lett. 1993, 34, 1181.
h) Davis, N. J.; Flitsch, S. L. J. Chem. Soc., Perkin Trans. 1
K4[Fe(CN)6]
O
R
O
(
R'
H
1994, 359. (i) Bolm, C.; Fey, T. Chem. Commun. 1999,
1795. (j) Zao, M.; Li, J.; Mano, E.; Song, Z.; Tschaen, D. M.;
N
H
R
Grabowski, E. J. J.; Reider, P. J. J. Org. Chem. 1999, 64,
564.
O
OH
2
R'
(
13) NaBr: (a) Leanna, M. R.; Sowin, T. J.; Morton, H. E.
Tetrahedron Lett. 1992, 33, 5029. (b) Inokuchi, T.;
Matsumoto, S.; Nishiyama, T.; Torii, S. Synlett 1990, 57.
(c) Inokuchi, T.; Matsumoto, S.; Torii, S. J. Org. Chem.
1991, 56, 2416. (d) Ogibin, Yu. N.; Khusid, A. Kh.;
Nikishin, G. I. Bull. Acad. Sci., USSR, Div. Chem. Sci. 1992,
aq phase (0.1 M KOH)
org. phase (toluene)
Figure 3 Schematic diagram of organic–aqueous two-phase oxida-
tion of alcohols with K Fe(CN) mediated by TEMPO PS resin.
3
6
7
35. (e) Kuroboshi, M.; Yoshihara, H.; Cortona, M. N.;
overoxidation to carboxylic acids. Furthermore, this
process exhibits an unprecedented degree of chemoselec-
tivity for the oxidation of primary hydroxyl groups in the
presence secondary hydroxyl groups.
Kawakami, Y.; Gao, Z.; Tanaka, H. Tetrahedron Lett. 2000,
41, 8131.
(
14) NaBrO : (a) Inokuchi, T.; Matsumoto, S.; Nishiyama, T.;
2
Torii, S. J. Org. Chem. 1990, 55, 462. (b) Inokuchi, T.; Liu,
P.; Torii, S. Chem. Lett. 1994, 1411. (c) Saito, S.; Hara, T.;
Naka, K.; Hayashi, T.; Moriwake, T. Synlett 1992, 241.
(
d) Saito, S.; Ishikawa, T.; Moriwake, T. Synlett 1993, 139.
Acknowledgment
(
(
15) Bu NBr : Inokuchi, T.; Matsumoto, S.; Fukushima, M.;
Torii, S. Bull. Chem. Soc. Jpn. 1991, 64, 796.
16) CuCl : (a) Miyazawa, T.; Endo, T. J. Mol. Catal. 1985, 31,
4
3
This work was supported in part by Grants-in-Aid (No. 15590035)
from Japan Society for the Promotion of Science. The Takeda
Science Foundation, the Casio Science Promotion Foundation and
the Shiseido Grants for Scientific Research are also acknowledged
for financial support.
2
2
17. (b) Miyazawa, T.; Endo, T. J. Polym. Sci., Part A:
Polym. Chem. 1985, 23, 2487.
(
(
17) K Fe(CN) : (a) Miyazawa, T.; Endo, T. J. Mol. Catal. 1985,
3
6
3
2, 357. (b) Miyazawa, T.; Endo, T. J. Mol. Catal. 1988, 49,
L31. (c) Kashiwagi, Y.; Chiba, S.; Anzai, J. New J. Chem.
003, 27, 1545.
References and Notes
2
18) During the oxidation reaction, some of the polymer beads
were removed from the reaction solution and extracted. The
product was identified by comparing its retention time on
HLPC or/and GC with those of an authentic sample. HPLC
(
(
1) Rozantsen, E. G.; Sholle, V. D. Synthesis 1971, 401.
2) de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. Synthesis
1
996, 1153.
3) Sheldon, R. A.; Arends, I. C. W. E. Adv. Synth. Catal. 2004,
46, 1051.
4) But, T. Y. S.; Tashino, Y.; Togo, H.; Toy, P. H. Org. Biomol.
Chem. 2005, 3, 970.
5) Ley, S. V.; Baxendal, I. R.; Bream, R. N.; Jackson, P. S.;
Leach, A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.;
Storer, R. I.; Taylor, S. J. J. Chem. Soc., Perkin Trans. 1
(
(
(
®
analysis was carried out using Daicel CHIRALCEL OD
column (46 mm × 250 mm). The column temperature was
kept constant at 40 °C. The analytes were eluted by i-PrOH–
n-hexane (2:33) at 0.7 mL min flow rate, and detected by
UV adsorption at 254 nm. The GC analysis was carried out
using CP-Cyclodextrin-B-2,3,6-M-19 capillary column
3
–
1
(
3
0.25 mm × 25 m). The column temperature increased at
2000, 3815.
–
1
°C min from 80 °C to 150 °C. The injection and detector
(
(
(
6) Weik, S.; Nicholson, G.; Jung, G.; Rademann, J. Angew.
Chem. Int. Ed. 2004, 40, 1436.
7) Bolm, C.; Magnus, A. S.; Hildebrand, J. P. Org. Lett. 2000,
temperatures were kept constant at 200 °C and 240 °C,
respectively.
(
19) (a) Kishioka, S.; Ohsaka, T.; Tokuda, K. Chem. Lett. 1998,
2, 1173.
3
43. (b) Kishioka, S.; Ohki, S.; Ohsaka, T.; Tokuda, K. J.
8) Pozzi, G.; Cavazzini, M.; Quici, S.; Benaglia, M.;
Electroanal. Chem. 1998, 452, 176.
Dell’Anna, G. Org. Lett. 2004, 6, 441.
Synlett 2006, No. 1, 69–72 © Thieme Stuttgart · New York