D. Basa6aiah, B. Sreeni6asulu / Tetrahedron Letters 43 (2002) 2987–2990
2989
Scheme 1.
References
21. Basavaiah, D.; Sreenivasulu, B.; Srivardhana Rao, J.
Tetrahedron Lett. 2001, 42, 1147–1149.
1
2
. Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207–
293.
. Nokami, J.; Yoshizane, K.; Matsuura, H.; Sumida, S. J.
Am. Chem. Soc. 1998, 120, 6609–6610.
22. Vedejs, E.; Ahmad, S.; Larsen, S. D.; Westwood, S. J.
Org. Chem. 1987, 52, 3937–3938.
23. White, J. D.; Ohira, S. J. Org. Chem. 1986, 51, 5492–5494.
24. Saxton, J. E. Nat. Prod. Rep. 1990, 7, 191–243.
2
2
2
5. Robins, D. J. Nat. Prod. Rep. 1989, 6, 221–230.
3
4
. Marshall, J. A. Chem. Rev. 1996, 96, 31–47.
. Masuyama, Y.; Takahara, J.; Kurusu, Y. J. Am. Chem.
Soc. 1988, 110, 4473–4474.
6. Spectral data for compound 2a: IR (KBr): 3487, 1712
−
1 1
cm ; H NMR (200 MHz) (CDCl ): l 1.34 (t, 3H, J=7.2
3
Hz), 3.98 (s, 1H), 4.18–4.37 (m, 3H), 5.12–5.26 (m, 2H),
5
6
7
. Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem.
Soc. 1993, 115, 8467–8468.
. Yasuda, M.; Tsuchida, M.; Baba, A. Chem. Commun.
6
.19–6.41 (m, 1H), 7.01–7.24 (m, 8H), 7.48–7.58 (m, 2H);
C NMR (50 MHz): l 14.06, 58.03, 62.79, 81.19, 117.40,
26.10, 126.38, 127.35, 127.64, 127.72, 129.65, 137.40,
1
3
1
1
1
998, 563–564.
+
38.76, 140.08, 174.64; FABMS (M +1): 297. Anal. calcd
. Costa, A. L.; Piazza, M. G.; Tagliavini, E.; Trombini, C.;
for C H O : C, 77.00; H, 6.80. Found C, 77.12; H, 6.79.
19
20
3
Umani-Ronchi, A. J. Am. Chem. Soc. 1993, 115, 7001–
7
2
7. The syn stereochemistry of the major diastereomers (2b–h)
002.
. Kim, Y. H.; Kim, S. H. Tetrahedron Lett. 1995, 40,
895–6898.
. Faller, J. W.; Sams, D. W. I.; Liu, X. J. Am. Chem. Soc.
996, 118, 1217–1218.
0. Marshall, J. A.; Palovich, M. R. J. Org. Chem. 1998, 63,
381–4384.
1
was assigned in analogy with 2a. The H NMR spectrum
8
9
of the purified (as well as crude) product 2h shows two
6
singlets at l 2.22 & 2.35 (:87:13) for CH protons (tolyl
3
methyl) and two singlets at l 3.90 & 3.98 (:13:87) for the
1
1
3
OH proton. Also, the C NMR spectrum of the purified
compound 2h shows peaks at l 70.73 (with low intensity)
1
4
and l 70.91 for [O-C6 H(CH ) ]. (The underlined chemical
3 2
1
1
1
1. Nishigaichi, Y.; Takuwa, A. Chem. Lett. 1994, 1429–1432.
2. Koreeda, M.; Tanaka, Y. Chem. Lett. 1982, 1299–1302.
3. Yanagisawa, A.; Ishiba, A.; Nakashima, H.; Yamamoto,
H. Synlett 1997, 88–90.
shift values were attributed to the minor anti-
1
diastereomer). The H NMR spectra of the pure (as well
as crude) products (2a, 2d, 2g) do not show the presence
1
of any other diastereomers (anti-). The H NMR spectra
1
1
1
1
1
1
2
4. Yamamoto, Y.; Maruyama, K.; Komatsu, T.; Ito, W. J.
of the crude products (2e, 2f) show two singlets at l 3.77
Org. Chem. 1986, 51, 886–891.
&
3.84 (:7:93) and l 3.75 & 3.82 (:10:90) for COOCH3
5. Yamamoto, Y.; Komatsu, T.; Maruyama, K. J. Chem.
Soc., Chem. Commun. 1983, 191–192.
6. Basavaiah, D.; Muthukumaran, K.; Sreenivasulu, B. Syn-
lett 1999, 1249–1250.
protons, respectively. (The underlined chemical shift val-
ues were attributed to the minor anti-diastereomers). The
1
H NMR spectra of the crude products (2b, 2c) show two
singlets at l 3.88 & 3.95 (:3:97) and l 3.87 & 4.02
7. Basavaiah, D.; Sreenivasulu, B.; Mallikarjuna Reddy, R.;
Muthukumaran, K. Synth. Commun. 2001, 31, 2987–2995.
8. Basavaiah, D.; Bharathi, T. K.; Gowriswari, V. V. L.
Tetrahedron Lett. 1987, 28, 4351–4352.
(
:3:97) for the OH proton, respectively. Though OH
proton signals are not normally used for the determina-
tion of diastereomeric composition, by analogy with that
of 2h the underlined chemical shift values might be
attributed to the minor anti-diastereomers. (Isolated
yields of the products and the amounts of starting materi-
als present in the crude mixture also support our assump-
tion).
9. Basavaiah, D.; Bharathi, T. K. Tetrahedron Lett. 1991, 32,
3
417–3420.
0. Basavaiah, D.; Pandiaraju, S.; Bakthadoss, M.; Muthuku-
maran, K. Tetrahedron: Asymmetry 1996, 7, 997–1000.